Waters Application Note
Beth Gillece-Castro, Kim van Tran, Jonathan E. Turner, Thomas E. Wheat and Diane M. Diehl, Waters Corp., Milford, Massachusetts, USA.
Glycosylation is a post-translational modification process that can significantly affect the biological properties of therapeutic proteins. The successful analysis of N- and O-linked glycan structures requires the ability to reproducibly resolve complex mixtures of isomeric oligosaccharides. Hydrophilic-interaction liquid chromatography (HILIC) is a powerful technique for separating a wide range of glycan structures. If the glycans have been labelled with a tag such as 2-amino benzamide (2-AB), the fluorescence can be monitored and used for relative quantification. The technique of Ultra Performance Liquid Chromatography (UPLC) is appropriate for such a difficult analytical problem. UPLC is based on the use of columns packed with very small particles and instruments optimized for use with these high resolution columns. The ACQUITY UPLC BEH Glycan column was specifically designed for use with Waters ACQUITY UPLC system. This analytical solution gives improved resolution, sensitivity and speed compared to HPLC techniques.
Figure 1: The N-linked glycans from pooled human IgG include high mannose, neutral and sialylated complex structures. The chromatogram shows 35 minutes of a one hour run.
Figure 1 sample: 15 pmol 2-AB-(human IgG library)*
Figure 2 sample: 15 pmol 2-AB-(bovine fetuin library)*
Column: ACQUITY UPLC BEH glycan 1.7μm, 2.1 × 150 mm
Eluent A: 100 mM ammonium formate, pH 4.5
Eluent B: Acetonitrile
Figure 1 gradient: 75–50% B over 46.5 min
Figure 2 gradient: 75–60% B over 46.5 min
Temperature: 60 °C
*ProZyme, San Leandro, California, USA
The first chromatogram shows the separation of N-linked oligosaccharides released from human IgG and labelled with 2-AB. This sample naturally includes a mixture of high mannose, complex, hybrid and sialylated glycans. Because the mixture contains a wide range of glycan classes, this sample was chosen for use as the QC standard for developing and manufacturing this column. This test ensures reproducible selectivity and resolution.
Figure 2: Analysis of 2-AB (Bovine Fetuin N-linked glycan library). Highlighted(*) are multiple peaks with a single molecular weight corresponding to disialylated biantennary glycans.
The chromatographic separation of all of the major oligosaccharides in the mixture, G0F, G1F, G2F and sialylated G2F is shown. The resolution of the structure G0F (peak 2) from the structure Man5 (peak 3) is particularly important. The two isomers of G1F are also completely resolved and the significance of their relative abundance may now be investigated.
The second chromatogram shows the separation of glycans released from bovine fetuin. These oligosaccharides include differing numbers of branch antennae and differing numbers of charged, acidic sialic acid termini. A challenging pair of isomers that are resolved (*) are triantennary glycans with two sialic acid residues and they elute at 41.4 and 43.1 minutes.
Glycan separation technology columns, when operated with the ACQUITY UPLC instrument and FLR detector provide a highly-resolving, reproducible, rapid method for profiling glycans. The improved analysis provides more certain identification and reliable quantification.
For complete details, visit www.waters.com/31123
© 2009 Waters Corporation. Waters, The Science of What's Possible, UPLC, and ACQUITY UPLC are trademarks of Waters Corporation.
Waters Corporation
34 Maple Street, Milford, Massachusetts 01757, USA
tel. +1 508 478 2000 fax +1 508 482 3605
Website: www.waters.com
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.