LCGC Asia Pacific
Knauer Application Note
There is an increasing public interest in the analysis of aromatic amines since this class of organic compounds includes many carcinogenic substances.
In recent years other sources of aromatic amines apart from tobacco smoke have gained more and more interest, for example, azo dyes (1). Therefore a fast and reliable method for the determination of aromatic amines in dyes like printer ink was developed. Five primary aromatic amines (PAAs) (aniline, 2-anisidine, 3-chloro-4methoxyanline, 2,4-dimethylaniline, o-toluidine) were chosen for this demonstration.
The mass spectra of single compound standards are shown in Figure 1. The resulting m/z values manifest the fragmentation patterns of the PAAs. For every PAA the highest intensity was detected for the single charged quasi molecule ion [M+H]+. Therefore this mass was chosen for quantification in all cases.
Figure 1: Mass spectra of single standard.
With the calibrated m/z values the extracts of two printer inks were analysed in order to determine PAA composition and concentrations of these five PAAs.
Samples were prepared as cold water extracts according to EN 645:1993 from printed paper.
This application was performed on a PLATINblue binary high pressure gradient UHPLC system equipped with degasser, autosampler, column thermostat and MSQ Plus mass detector.
UHPLC Parameters: Column: BlueOrchid 175–1.8 C18, 100 x 2 mm i.d.; Eluent A: water + 0.1% formic acid; Eluent B: methanol + 0.1% formic acid; Gradient: yes (details on request); Flow rate: 0.2 mL/min; Injection volume: 50 µL; Column temperature: 40 °C
MS Detection Parameters: Ionization mode: ESI, positive mode; Needle voltage: 1 kV; Cone voltage: 20 V; Probe temperature: 200 °C
Figure 2: SIC scans of two printer inks (P1 + P2) after sample preparation.
The UHPLC-ESI-MS method presented in this application demonstrates the fast and simultaneous separation, qualification and quantification of five PAAs usually found in printer ink. The limit of detection was in the range between 1 to 5 µg/L (S/N = 3). Only 7 min are required for the analysis of one sample, including a washing step and re-equilibration of the column. Therefore the method is well-suited for routine analyses. Due to the fast separation and low eluent flow rate of this method, only about 1.5 mL of eluent and less than 1 mL of methanol are needed for one run. Thus this method is both economical and environmentally acceptable.
(1) M.J. Zeilmaker, H.J van Kranen, M.P. van Veen and J. Janus, Cancer risk assessment of azo dyes and aromatic amines from tattoo bands, folders of paper, toys, bed clothes, watch straps and ink. Rijksinstituut voor Volksgezondheid en Milieu RIVM, 22-Feb-2000.
KNAUER
Wissenschaftliche Gerätebau Dr. Ing. Herbert Knauer GmbH,
Hegauer Weg 38, 14163 Berlin, Germany
tel: +49 30 809727 0 fax: +49 30 801501 0
E-mail: info@knauer.net Website: www.knauer.net
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.