Ion mobility spectrometry has found commercial success as a homeland security tool in the field detection of explosives, drugs, and chemical weapons. Other common uses for the technique have been in the pharmaceutical industry for cleaning validation and in the analysis of biological material. The applications to be discussed in this Wednesday morning session include the combination of IMS with MS, the characterization of carbohydrate?protein binding, protein and peptide analysis, IMS-MS analyses with elevated electric field intensities, and neutral ion pair evaporation from ionic liquid nanodroplets
Ion mobility spectrometry has found commercial success as a homeland security tool in the field detection of explosives, drugs, and chemical weapons. Other common uses for the technique have been in the pharmaceutical industry for cleaning validation and in the analysis of biological material. The applications to be discussed in this Wednesday morning session include the combination of IMS with MS, the characterization of carbohydrate–protein binding, protein and peptide analysis, IMS-MS analyses with elevated electric field intensities, and neutral ion pair evaporation from ionic liquid nanodroplets.
The first presentation will be given by Herbert H. Hill of Washington State University (Pullman, Washington). Hill, a long-time proponent of the IMS technique, will discuss how ion mobility–mass spectrometry provides molecular structure information about ions that is not possible to obtain using MS alone. He will review the various types of IM-MS instruments and their applications. The presentation is titled “Application Overview of Ion Mobility Spectrometry Coupled with Mass Spectrometry.”
Julie A. Leary of the University of California Davis (Davis, California) will present a talk titled “Ion Mobility Characterization of Carbohydrate:Protein Conformational Binding.” Her presentation will report the use of IM-MS to study the preferential binding of GAG to specific chemokine conformations.
The next presentation in the session, “A Shape Selective Study of Conformational Change in Metal Containing Proteins,” will be given by James Scrivens of the University of Warwick (Coventry, UK). He will discuss the use of IM-MS to measure metalloprotein conformational changes with and without a metal substrate.
Thomas Egan of Ionwerks (Houston, Texas) will present “Photofragmentation with VUV Post-Ionization Coupled with Ion Mobility Mass Spectrometry for Analysis of Peptides and Sulfatides.” The talk will cover photofragmentation with laser desorption, ion mobility MS, optical parametric oscillator-IR, UV 349-nm desorption, and postionization.
Alexandre A. Shvartsburg’s (Pacific Northwest National Laboratory) presentation, titled “Ultrafast Field Asymmetric Waveform Ion Mobility Spectrometry/Mass Spectrometry Analyses at Extreme Electric Fields in Microscopic Multichannel FAIMS Chips,” will discuss how elevating the electric field intensity in FAIMS accelerates analyses and enables new separations.
The session’s final presentation, to be given by Juan Fernandez de la Mora of Yale University (New Haven, Connecticut), is titled “Observation of Neutral Molecule (Ion-Pair) Evaporation from Ionic Liquid Nanodroplets by Tandem Differential Mobility Analysis-Mass Spectrometry (DMA-MS).” His talk will describe the first measurements of single neutral ion pair evaporation from ionic liquid nanodroplets using the DMA-MS technique.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.