Rapid Perfluorinated Alkyl Acid Analysis by LC–MS/MS Increases Sample Throughput
July 1st 2017• Raptor C18 SPP 5 μm core-shell silica particle columns offer excellent resolution for fluorochemicals with short total cycle times. For even faster analysis, 2.7 μm core-shell particles are available. • Meets EPA Method 537 requirements. • Unique, robust Raptor C18 column design increases instrument uptime.
Rapidly Analyze a Wide Range of Glycol Ethers by GC–MS
October 24th 2016Chromatographic conditions were developed for a fast GC-MS glycol ether analysis on the Rxi®-1301Sil MS column. This cyanobased thin film column provides better resolution and faster run times than the thick film cyanopropylphenyl-type columns commonly used for speciation of the glycol ethers. The glycol ethers are high production volume industrial chemicals that often occur as complex mixtures of isomers. The Rxi®-1301Sil MS column is uniquely matched for the separation of these isomers while still producing narrow and symmetric peaks for the low molecular weight ethylene glycol ethers.
Semivolatiles Analysis Using Split Injection
February 1st 2016Semivolatile calibrations on this column dimension often range from 1.0 to over 100 ng/µL; however, a 0.25 mm ID column usually experiences peak overload as the mass on column approaches 10 ng. As shown in Figure 1, isobars that elute close together-such as benzo[b]fluoranthene and benzo[k]fluoranthene-quickly become unquantifiable as mass on column increases. Under split conditions, the resolution requirement (50% valley) is met for all nine calibration standards, and the peak apices shift less than 0.04 min, indicating only minor peak overload. Conversely, under splitless conditions, the three highest concentration calibration standards fail the resolution criterion. The peak fronting and resulting overlap from column overload make it impossible to generate a linear calibration including these points. Additionally, the peak apex of benzo[b]fluoranthene shifts more than 0.2 min, which could result in an erroneous compound identification.
New Method for Sampling and Analysis of Electronic Cigarette Aerosols
December 1st 2015Following sampling, tubes were transferred to a Markes UNITY™ thermal desorption system paired with an Agilent 7890B GC that was coupled to an Agilent 5977A MS detector. The UNITY™ system and GC–MS parameters are presented in Table I and Table II, respectively.