Application Notes: Environmental
Analysis of Volatile Organic Compounds in Air by Thermal Desorption
February 1st 2009The Clean Air Act (CAA) (1) provides the U.S. Environmental Protection Agency authority to enforce regulations limiting emissions of volatile organic compounds (VOCs) and other air pollutants. The Compendium of Methods for the Determination of Toxic Compounds in Ambient Air includes a variety of sampling and analysis methods (2, 3), including use of single- and multi-sorbent tubes. Concentrating a large volume of sample onto a sorbent tube, followed by thermal desorption onto a GC column provides an efficient, cost-effective means of monitoring VOCs at parts per billion (ppb) or parts per trillion (ppt) levels.
Multi-Residue Analysis of Pesticides in Fruits Using DisQuE, a Dispersive Solid-Phase Extraction Kit
September 1st 2008A new technique, QuEChERS, standing for Quick, Easy, Cheap, Effective, Rugged, and Safe, is readily accepted by both the AOAC International and the Committee of European Normalization (CEN) for the pesticide residues in foods and agriculture products. Waters DisQuEâ„¢ Dispersive Sample Preparation Kit contains conveniently-packaged centrifuge tubes with pre-weighed sorbents and buffers designed for use with the AOAC official QuEChERS methods.
Techniques for Reducing Purge-and-Trap Cycle Times in VOC Analysis
September 1st 2008The purge-and-trap (P&T) technique for analysis of volatile organic compounds (VOCs) was pioneered in the 1970s at the United States Environmental Protection Agency (USEPA) research laboratory in Cincinnati. Many of the operational parameters developed during this time period are still included in USEPA methods. While these parameters still produce good analytical results, they do not take advantage of advances in instrumentation that enable analysis of emerging contaminants such as fuel oxygenates, and increased sample throughput.
On-Site Sample Preparation Using MEPS for Waste Water Analysis
September 1st 2008MEPS uses a barrel insert and needle (BIN) device to reduce Solid-Phase Extraction (SPE) to a micro-scale suitable for small volume samples and for the online adaptation of conventional SPE techniques. Because the SPE cartridge (BIN) is incorporated into the needle assembly of a gas-tight syringe, MEPS is also a simple field-portable SPE device that may be operated manually without need for sampling pumps or, alternatively, may be incorporated into robotic samplers. MEPS devices are of glass and stainless steel construction allowing them to be fully immersed for sampling at depth or, alternatively, used at needle depth to avoid perturbing the stream from which the sample was drawn. An extension pole allowed MEPS to be used to sample back along pipes or down inspection vents. When sampling from drainage pits and open sumps, there was minimal requirement to remove grates to gain access. An extension pole also allowed sampling from outflows that were offensive and could be readily adapted for safe sampling of..
Semivolatile Analysis Using an Inertness-Performance-Tested Agilent J&W DB-5ms Ultra Inert Column
September 1st 2008Semivolatile analyses using methods similar to US EPA method 8270 (1) are important in environmental laboratories worldwide. A number of acidic compounds such as benzoic acid or 2,4-dinitrophenol and strong bases such as pyridine or benzidine are active species found in the semivolatile sample set. These highly polar species are particularly susceptible to adsorption into active surfaces in the sample flow path, including the column itself. System and column inertness are critical for effective analysis of these active chemical species.
Quick Start-Up for a Modified QuEChERS Multi-residue Pesticide Analysis in Lettuce by GC–MSn
September 1st 2008Use of a modified QuEChERS sample preparation procedure was fully evaluated for identification and quantitation of pesticides in lettuce using gas chromatography and ion trap mass spectrometry. Final results compared favorably to the reporting and detection limits offered by several worldwide agencies, demonstrating a robust and reliable solution for analyzing pesticide residues in lettuce.
Quantitative LC–MS Analysis of Perfluorochemicals
July 2nd 2008This application note describes a fast and sensitive LC–MS method using a Hypersil GOLD column on a Thermo Scientific LC–MS system for the quantitative analysis of two widespread PFCs, perfluorooctanoic acid (PFOA) and perfluorooctansulphonate (PFOS).
On-site Sample Preparation Using MEPS for Waste Water Analysis
June 1st 2008MEPS uses a barrel insert and needle (BIN) device to reduce Solid-Phase Extraction (SPE) to a micro-scale suitable for small volume samples and for the online adaptation of conventional SPE techniques. Because the SPE cartridge (BIN) is incorporated into the needle assembly of a gas-tight syringe, MEPS is also a simple field-portable SPE device that may be operated manually without need for sampling pumps or, alternatively, may be incorporated into robotic samplers. MEPS devices are of glass and stainless steel construction allowing them to be fully immersed for sampling at depth or, alternatively, used at needle depth to avoid perturbing the stream from which the sample was drawn. An extension pole allowed MEPS to be used to sample back along pipes or down inspection vents. When sampling from drainage pits and open sumps, there was minimal requirement to remove grates to gain access. An extension pole also allowed sampling from outflows that were offensive and could be readily adapted for safe sampling of..
Determination of Organic Compounds in Drinking Water Using Atlantic SPE Disks for EPA Method 525.2
June 1st 2008EPA Method 525.2 describes the procedure to determine low ppb levels of semi-volatile organic material in drinking water using solid phase extraction (SPE) or liquid-solid extraction (LSE) techniques. The City of Fort Worth, Water Department implemented an automated SPE process for the analysis of semi-volatiles by EPA Method 525.2, using the Atlantic "Certified for Automation" SPE Disk for EPA Method 525.2. Ethyl acetate, methanol, and water were used to condition the Atlantic disk prior to the extraction step. The extraction solvents used were a 1:1 mixture of methylene chloride and ethyle acetate. Extracts were then analyzed by GC–MS using a splitless injection technique.
Automated Extraction Technique for Improved Recovery of Phenols
June 1st 2008Dionex has developed a new standard for flow-through solvent extraction which allows accelerated solvent extraction (ASE®) of matrices that have undergone acid or alkaline pretreatment or digestion. The new ASE 150 and ASE 350 systems use extraction cells and post-cell solvent pathways constructed of Dionium™ material. This pH-hardened substance resists corrosion under acidic or alkaline conditions used in standard pretreatments, widening the scope of ASE applications and significantly expanding its capabilities.
Techniques for Reducing Purge-and-Trap Cycle Times in VOC Analysis
June 1st 2008The purge-and-trap (P&T) technique for analysis of volatile organic compounds (VOCs) was pioneered in the 1970s at the United States Environmental Protection Agency (USEPA) research laboratory in Cincinnati. Many of the operational parameters developed during this time period are still included in USEPA methods. While these parameters still produce good analytical results, they do not take advantage of advances in instrumentation that enable analysis of emerging contaminants such as fuel oxygenates, and increased sample throughput.
The Use of Accurate Mass and MS-MS for the Analysis of PPCPs in Water
June 1st 2008The United States Geological Survey (USGS) has found pharmaceuticals and personal-care products (PPCPs) containing known or suspected endocrine-disruptors in U.S. rivers. As such, it is important to use adequate techniques to help identify these compounds and possible metabolites.
Quantitative LC–MS Analysis of Pefluorochemicals
June 1st 2008This application note describes a fast and sensitive LC-MS method using a Hypersil GOLDâ„¢ column on a Thermo Scientific LC-MS system for the quantitative analysis of two widespread PFCs, perfluorooctanoic acid (PFOA) and perfluorooctansulfonate (PFOS).
Method 6040D, Odors in Drinking Water, Using SPME on the Supelco SLB-5ms Capillary Column
June 1st 2008A method for trace odor components, isopropyl-methoxypyrazine (IPMP), isobutyl-methoxypyrazine (IBMP), methylisoborneol (MIB), and geosmin in drinking water involving the use of solid phase microextraction (SPME) and the SLB-5ms capillary column using gas chromatography/mass spectrometry (GC–MS).
Automated Sample Cleanup of Olive Oil
June 1st 2008Gel permeation chromatography (GPC) has been used as an effective cleanup procedure for removing high molecular weight interfering molecules such as lipids, pigments, proteins, and polymers before GC or HPLC analysis. The GPC cleanup method has been extensively documented (1–3) and is also recommended in US EPA SW-846 Method 3640A. To demonstrate the efficacy of this method to extract polar and nonpolar substances by using the KNAUER Smartline GPC Cleanup Unit 6500, olive oil samples were investigated by spiking these with different types of organic pollutants, including PAHs, phthalates, phenols, and triazine.
Multi-Residue Pesticide Screening Method Using GC–MS
December 2nd 2007Pesticides are widely used by farmers to control pests, weeds and molds that would otherwise decrease crop production. While this has significantly increased worldwide food productions, these same pesticides pose health risks to humans. The restrictions for specific pesticides differ from one country to the next and as world trade increases, the potential threat to other countries' populations increases. For this reason, pesticides and other food related allergens are currently the subjects of increasing scrutiny and regulation.