The Use of Subtle Differences in Selectivity to Improve Separation of Structurally Diverse Analytes
July 2nd 2009The separation of structurally diverse analytes is often complicated by chance coelutions with other analytes or with matrix related compounds. Often the column is blamed, but while such coelutions make analysis difficult they do not necessarily indicate a faulty column, poor chromatography or method design.
The Integration of Microextraction Packed Sorbent (MEPS) into Multidimensional Strategies
March 2nd 2009LC/GC approaches to analysis are attractive because they combine the selectivity of solid-phase sorbents in the first dimension with the separating power and peak capacity of capillary GC in the following dimensions.
The Integration of Microextraction Packed Sorbent (MEPS) into Multidimensional Stratagies
February 1st 2009LC–GC approaches to analysis are particularly attractive because they combine the selectivity of solid phase sorbents in the first dimension with the separating power and peak capacity of a capillary GC column in the following dimensions. Their widespread use is limited because of the difficultly in desolvating the stream from the LC dimension without the solvent vapour passing down the GC column in significant quantity. An alternative approach to elution chromatography in the first dimension is to harness the specificity of the solid-phase process for digital chromatography using discontinuous changes in solvent polarity. Digital chromatography on a small sorbent bed reduces the volume of mobile phase to discrete plugs that are sufficiently small to be injected directly into a GC with a large volume injector or, alternatively, subsampled into a conventional split/splitless injector.
On-Site Sample Preparation Using MEPS for Waste Water Analysis
September 1st 2008MEPS uses a barrel insert and needle (BIN) device to reduce Solid-Phase Extraction (SPE) to a micro-scale suitable for small volume samples and for the online adaptation of conventional SPE techniques. Because the SPE cartridge (BIN) is incorporated into the needle assembly of a gas-tight syringe, MEPS is also a simple field-portable SPE device that may be operated manually without need for sampling pumps or, alternatively, may be incorporated into robotic samplers. MEPS devices are of glass and stainless steel construction allowing them to be fully immersed for sampling at depth or, alternatively, used at needle depth to avoid perturbing the stream from which the sample was drawn. An extension pole allowed MEPS to be used to sample back along pipes or down inspection vents. When sampling from drainage pits and open sumps, there was minimal requirement to remove grates to gain access. An extension pole also allowed sampling from outflows that were offensive and could be readily adapted for safe sampling of..
On-site Sample Preparation Using MEPS for Waste Water Analysis
June 1st 2008MEPS uses a barrel insert and needle (BIN) device to reduce Solid-Phase Extraction (SPE) to a micro-scale suitable for small volume samples and for the online adaptation of conventional SPE techniques. Because the SPE cartridge (BIN) is incorporated into the needle assembly of a gas-tight syringe, MEPS is also a simple field-portable SPE device that may be operated manually without need for sampling pumps or, alternatively, may be incorporated into robotic samplers. MEPS devices are of glass and stainless steel construction allowing them to be fully immersed for sampling at depth or, alternatively, used at needle depth to avoid perturbing the stream from which the sample was drawn. An extension pole allowed MEPS to be used to sample back along pipes or down inspection vents. When sampling from drainage pits and open sumps, there was minimal requirement to remove grates to gain access. An extension pole also allowed sampling from outflows that were offensive and could be readily adapted for safe sampling of..
On-Line and Off-Line Application of Micro-SPE (MEPS)
September 1st 2007Solid-phase extraction (SPE) has revolutionized sample preparation. Variations on the technique offer enhanced recovery, greater speciation and reduced solvent and sample consumption over other techniques. Micro-extraction packed sorbent (MEPS) is the miniaturization of conventional SPE from millilitre to microlitre bed volumes that allows SPE to be used with very small samples. The manipulation of the small volumes is achieved with a precision gas tight syringe. With a typical void volume of 7 μL, the volume of solvent eluted from MEPS is compatible with GC and LC inlets making it ideal for integration into an automated sampling system for on-line SPE.