The Application Notebook
Studies of odd-electron CID behaviors reveal that free radical fragmentation is structure-dependent and is directly correlated with the functional groups that stabilize the newly-formed free radicals.
Guifen Xu1 , Tom Huang1 , Jennifer Zhang2 , Thomas D. McClure2 , and Shichang Miao1* ,1 PKDM Department, Amgen SSF; * Analytical Chemistry and DMPK, ChemoCentryx Inc.,2 Thermo Fisher Scientific
Studies of odd-electron CID behaviors reveal that free radical fragmentation is structure-dependent and is directly correlated with the functional groups that stabilize the newly-formed free radicals.
Mass spectrometry has become an indispensable tool for structural analysis in drug discovery and development. A key element in analysis of structures by mass spectrometry is to identify correct fragmentation pathways. Collision induced dissociation (CID) has been extensively used for structure elucidation to determine fragmentation pathways.
Figure 1
CID in the ESI and APCI modes has been found to generate mostly even-electron fragments, while it has been occasionally reported to form odd-electron free radical ions. We studied a series of aromatic and non-aromatic compounds, such as sulfonamides, amides, aromatic t-Bu compounds, aromatic ether, oxime ethers, and pyrimidines using the LTQ and LTQ Orbitrap mass spectrometers (Thermo Scientific, San Jose, California) to determine the structural requirement and the fragmentation mechanisms for free radical CIDs.
All test compounds were purchased from Sigma-Aldrich (Milwaukee, Wisconsin) or Maybridge (Morris Plains, New Jersey) and were prepared in 40 μM with 1:1 methanol-H2O before ESI-CID-MS-MS analysis without further purification.
All samples were first analyzed using ESI on the LTQ coupled with pumps and autosampler under standard conditions: capillary temperature, 325°C; source voltage, 6000 V. Helium was used as the collision gas. The MS-MS parameters were: isolation width, 2; and collision energy, 35%. Compounds with good MS and MS2 signals were further analyzed using ESI-LTQ Orbitrap coupled with the Thermo Scientific Accela U-HPLC system for accurate mass measurement. The MS-MS parameters were the same as those used for the LTQ.
A series of aromatic and non-aromatic compounds such as sulfonamides, amides, phenols, oximes, and pyrimidines were analyzed for their CID fragments, and the molecular compositions of the key fragments were identified through accurate mass measurement using the LTQ Orbitrap mass spectrometer.
Shown in Figure 1 is a representative MS2 fragment ion mass spectrum of one of the compounds.
For sulfonamides, in general, when the sulfonamide nitrogen was attached to an aromatic ring, free radical fragment ions involving the aromatic amine due to the S-N bond cleavage were observed, unless more facile CID pathways were present and prevailed in the structure. For non-aromatic sulfonamides, free radical fragments were not observed in the test compounds.
Aromatic t-Bu and ether compounds normally generated a free radical fragment ion resulting from the loss of the methyl or ethyl free radical. Free radical fragments were observed more rarely in the selected amides, pyrimidine, and oxime compounds.
The assignment of these free radical ions was all supported by the accurate mass measurement on the LTQ Orbitrap with a mass accuracy less than 5 ppm. One common theme among these compounds that showed free radical fragment ions is that the newly formed free radical is located at a position next to an aromatic ring which stabilizes this free radical.
(1) Tozuka Z, Kaneko H, Shiraga T, Mitani Y, Beppu M, Terashita S, Kawamura A and Kagayama A., J. Mass Spectrom. 2003; 38: 793–808
(2) Niessen WMA, Analusis, 2000, 28:885–887
(3) Nakata H, Eur. Mass Spectrom., 1999, 5: 411–418
(4) Eckers C, Monaghan JJ, and Wolff J-C, Eur.J. Mass Spectrom., 2005, 11: 73–82
(5) a) Hopfgartnert G, Vetter W, Meister W, and Ramuz H, Eur. J. Mass Spectrom. 1996; 31: 69–76
b) Klagkou, K, Pullen, FS, Harrison, ME, Organ, A, Firth, A and Langley GJ, Rapid Commun. Mass Spectrom. 2003; 17: 2373–2379
Thermo Fisher Scientific Inc.
355 River Oaks Parkway, San Jose, CA 95134-1991
tel. +1 800-532-4752; fax +1 561-688-8731
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
6PPD-Quinone Reference Materials
November 19th 2024Ensure environmental and consumer health with our standards for 6PPD-quinone testing. 6PPD-quinone has been detected in the environment and has shown toxicity to aquatic life. Chiron, by Zeptometrix® offers reference standards suitable for Draft EPA Method 1634.
Current and Future Advancements in PFAS Research
November 19th 2024This white paper explores the health risks, environmental impacts, and detection technologies associated with PFAS, along with the latest advancements in PFAS research. It also provides an overview of the regulatory landscape and emphasizes the crucial role of companies like ZeptoMetrix® in supplying PFAS reference materials, which are essential for ensuring the accuracy of testing. Lastly, the paper outlines key areas for future PFAS research.
Microplastics Reference Materials
November 19th 2024The World’s First Microplastics Reference Materials. Our scientists have focused on these emerging global threats, and are excited to share Chiron MicroPrefs®, the first commercial microplastic reference material. The MicroPref® portfolio is designed to detect the six most abundant plastics in the environment and is available in a novel, easy-to-use tablet formulation. Be among the first labs to join in the fight against microplastic pollution by exploring the NEW line of Chiron MicroPrefs® microplastic standards.