The Application Notebook
Studies of odd-electron CID behaviors reveal that free radical fragmentation is structure-dependent and is directly correlated with the functional groups that stabilize the newly-formed free radicals.
Guifen Xu1 , Tom Huang1 , Jennifer Zhang2 , Thomas D. McClure2 , and Shichang Miao1* ,1 PKDM Department, Amgen SSF; * Analytical Chemistry and DMPK, ChemoCentryx Inc.,2 Thermo Fisher Scientific
Studies of odd-electron CID behaviors reveal that free radical fragmentation is structure-dependent and is directly correlated with the functional groups that stabilize the newly-formed free radicals.
Mass spectrometry has become an indispensable tool for structural analysis in drug discovery and development. A key element in analysis of structures by mass spectrometry is to identify correct fragmentation pathways. Collision induced dissociation (CID) has been extensively used for structure elucidation to determine fragmentation pathways.
Figure 1
CID in the ESI and APCI modes has been found to generate mostly even-electron fragments, while it has been occasionally reported to form odd-electron free radical ions. We studied a series of aromatic and non-aromatic compounds, such as sulfonamides, amides, aromatic t-Bu compounds, aromatic ether, oxime ethers, and pyrimidines using the LTQ and LTQ Orbitrap mass spectrometers (Thermo Scientific, San Jose, California) to determine the structural requirement and the fragmentation mechanisms for free radical CIDs.
All test compounds were purchased from Sigma-Aldrich (Milwaukee, Wisconsin) or Maybridge (Morris Plains, New Jersey) and were prepared in 40 μM with 1:1 methanol-H2O before ESI-CID-MS-MS analysis without further purification.
All samples were first analyzed using ESI on the LTQ coupled with pumps and autosampler under standard conditions: capillary temperature, 325°C; source voltage, 6000 V. Helium was used as the collision gas. The MS-MS parameters were: isolation width, 2; and collision energy, 35%. Compounds with good MS and MS2 signals were further analyzed using ESI-LTQ Orbitrap coupled with the Thermo Scientific Accela U-HPLC system for accurate mass measurement. The MS-MS parameters were the same as those used for the LTQ.
A series of aromatic and non-aromatic compounds such as sulfonamides, amides, phenols, oximes, and pyrimidines were analyzed for their CID fragments, and the molecular compositions of the key fragments were identified through accurate mass measurement using the LTQ Orbitrap mass spectrometer.
Shown in Figure 1 is a representative MS2 fragment ion mass spectrum of one of the compounds.
For sulfonamides, in general, when the sulfonamide nitrogen was attached to an aromatic ring, free radical fragment ions involving the aromatic amine due to the S-N bond cleavage were observed, unless more facile CID pathways were present and prevailed in the structure. For non-aromatic sulfonamides, free radical fragments were not observed in the test compounds.
Aromatic t-Bu and ether compounds normally generated a free radical fragment ion resulting from the loss of the methyl or ethyl free radical. Free radical fragments were observed more rarely in the selected amides, pyrimidine, and oxime compounds.
The assignment of these free radical ions was all supported by the accurate mass measurement on the LTQ Orbitrap with a mass accuracy less than 5 ppm. One common theme among these compounds that showed free radical fragment ions is that the newly formed free radical is located at a position next to an aromatic ring which stabilizes this free radical.
(1) Tozuka Z, Kaneko H, Shiraga T, Mitani Y, Beppu M, Terashita S, Kawamura A and Kagayama A., J. Mass Spectrom. 2003; 38: 793–808
(2) Niessen WMA, Analusis, 2000, 28:885–887
(3) Nakata H, Eur. Mass Spectrom., 1999, 5: 411–418
(4) Eckers C, Monaghan JJ, and Wolff J-C, Eur.J. Mass Spectrom., 2005, 11: 73–82
(5) a) Hopfgartnert G, Vetter W, Meister W, and Ramuz H, Eur. J. Mass Spectrom. 1996; 31: 69–76
b) Klagkou, K, Pullen, FS, Harrison, ME, Organ, A, Firth, A and Langley GJ, Rapid Commun. Mass Spectrom. 2003; 17: 2373–2379
Thermo Fisher Scientific Inc.
355 River Oaks Parkway, San Jose, CA 95134-1991
tel. +1 800-532-4752; fax +1 561-688-8731
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.
GPCRs – The Biological Traffic Modulator: Chromatographic Analysis of Peptides in the GI Tract
January 20th 2025The G protein-coupled receptors (GPCR) are found throughout the entire body and have shown significance in the development of new therapeutic treatments. Isolation of seven classic GRPC peptides initiating in the GI tract highlights the benefits of using the polymer-based PRP-3, a reversed-phase resin. The covalent bonds found in the PRP-3 exhibit advantageous interactions between the biological π bonds found in the peptides and the available aromatic benzyl rings of the resin.