The Application Notebook
Improve the separation of 14 drugs of abuse in a complex mixture by employing a ternary solvent gradient.
Guifeng Jiang, Thermo Fisher Scientific
Improve the separation of 14 drugs of abuse in a complex mixture by employing a ternary solvent gradient.
Abinary solvent gradient won't always resolve every analyte in a complex mixture in the short run time of ultra-high performance liquid chromatograph (UHPLC) methods. But the usual solution – manipulating selectivity with a third solvent – is not possible with high pressure binary solvent mixing equipment.
Figure 1
The Accela™ High Speed LC oversteps this limitation by using a quaternary solvent gradient pump. Developing methods is simpler because four solvent channels are available to modify mobile phase solvent strength, pH, and ionic strength. Methods perform better because the Accela pump blends up to four solvents to deliver optimized mobile phase gradients, rather than compromised binary gradients.
We show that a ternary gradient performs better than a binary gradient in the determination of 14 drugs/metabolites by UHPLC/mass spectrometry (UHPLC–MS).
Table I
Instrument: Thermo Scientific Accela UHPLC system
with MSQ Plus™ Detector and
Xcalibur™ 2.05
Column: Hypersil Gold PFP (perfluorinated phenyl),
1.9 μm, 100 × 2.1 mm
Flow Rate: 1 mL/min
Mobile phase: A: Water with 0.06 % (v/v) acetic acid
B: Acetonitrile with 0.06% (v/v) acetic acid
C: Methanol with 0.06% (v/v) acetic acid
Injection: 1 μL partial loop injection, 25 μL loop size
Column Temp: 45°C
We compared two UHPLC–MS methods for the separation and detection of 14 illicit drugs.
Table II
Figure 1(a) shows the separation achieved by using the binary gradient. While some of the analytes separate with adequate resolution, several pairs are not baseline resolved. As shown in Figure 1 (b), the ternary gradient provides a better separation and all 14 drugs are baseline resolved.
UHPLC–MS employing a ternary gradient delivered by a quaternary mixing pump provides baseline resolution of 14 illicit drugs in 10 min.
(1) Application Note 423, Document 62751, 2008, Thermo Fisher Scientific.
Thermo Fisher Scientific Inc.
355 River Oaks Parkway, San Jose, CA 95134-1991
tel. +1 800-532-4752; fax +1 561-688-8731
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
6PPD-Quinone Reference Materials
November 19th 2024Ensure environmental and consumer health with our standards for 6PPD-quinone testing. 6PPD-quinone has been detected in the environment and has shown toxicity to aquatic life. Chiron, by Zeptometrix® offers reference standards suitable for Draft EPA Method 1634.
Current and Future Advancements in PFAS Research
November 19th 2024This white paper explores the health risks, environmental impacts, and detection technologies associated with PFAS, along with the latest advancements in PFAS research. It also provides an overview of the regulatory landscape and emphasizes the crucial role of companies like ZeptoMetrix® in supplying PFAS reference materials, which are essential for ensuring the accuracy of testing. Lastly, the paper outlines key areas for future PFAS research.
Microplastics Reference Materials
November 19th 2024The World’s First Microplastics Reference Materials. Our scientists have focused on these emerging global threats, and are excited to share Chiron MicroPrefs®, the first commercial microplastic reference material. The MicroPref® portfolio is designed to detect the six most abundant plastics in the environment and is available in a novel, easy-to-use tablet formulation. Be among the first labs to join in the fight against microplastic pollution by exploring the NEW line of Chiron MicroPrefs® microplastic standards.