The Application Notebook
Morphine is an effective pain-relieving drug that is primarily metabolized into morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). The highly potent M6G may have adverse effects, such as respiratory depression and renal failure, if accumulated in the body. As morphine abuse continues to affect modern society, an effective method must be established to analyse morphine and its structurally related compounds in biological fluid samples. In this work, a UPLC–MS-MS method was developed to separate six morphine-related compounds on a 2.1 Ã- 100 mm, 1.8 μm ACQUITY UPLC HSS T3 column in a single run using an ACQUITY UPLC system connected to a fast-scanning triple-quadrupole MS detector (TQD). The method achieved adequate retention of these very polar compounds by reversed-phase (RP) chromatography in an 8-min total run time.
Zhe Yin, Kenneth J. Fountain, Erin E. Chambers and Diane M. Diehl, Waters Corporation
Morphine is an effective pain-relieving drug that is primarily metabolized into morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). The highly potent M6G may have adverse effects, such as respiratory depression and renal failure, if accumulated in the body. As morphine abuse continues to affect modern society, an effective method must be established to analyse morphine and its structurally related compounds in biological fluid samples. In this work, a UPLC–MS-MS method was developed to separate six morphine-related compounds on a 2.1 × 100 mm, 1.8 μm ACQUITY UPLC HSS T3 column in a single run using an ACQUITY UPLC system connected to a fast-scanning triple-quadrupole MS detector (TQD). The method achieved adequate retention of these very polar compounds by reversed-phase (RP) chromatography in an 8-min total run time.
SPE recoveries for most of the compounds at 25 ng/mL were > 90% except for the glucuronide metabolites that had slightly lower recovery (Table I). Inter-day SPE reproducibility was better than 6%. A representative chromatogram of a pre-extracted spiked sample is shown in Figure 1.
Table I: SPE recoveries and inter-day % RSD.
All calibration curves had an R2 ≥ 0.998 and % deviation for each point was < ±15% of the expected values. The LLOQ values (five times the level in the blank matrix) for all analytes were determined to be 0.1 or 0.25 ng/mL.
Figure 1
A method for the simultaneous extraction and quantification of six morphine-related compounds in porcine plasma was developed. All six compounds were analysed in a single UPLC–MS-MS run in 8 min. A neutralizing collection step was used in the SPE protocol to prevent analyte degradation. The SPE procedure using an Oasis MCX μElution plate was able to achieve consistent recoveries ranging from 77% to 120%, depending on the analyte. The method was linear over at least three orders of magnitude with R2 ≥ 0.998 and achieved LLOQ values in the range of 0.1 to 0.25 ng/mL. This method achieves the desired detection limits in less time than previously published methods and addresses the issue of analyte instability for the selective extraction of polar compounds.
For the complete application note and results visit www.waters.com/28961
© 2009 Waters Corporation. Waters, The Science of What's Possible, UPLC, ACQUITY UPLC, Oasis and ACQUITY are trademarks of Waters Corporation.
Waters Corporation
34 Maple Street, Milford, MA 01757
tel. (508)478-2000, fax (508)478-1990
Website: www.waters.com
High pH and Temperature with HALO® ELEVATE C18, 1.5 mm ID Column
December 11th 2024Over the course of 5000 injections, the HALO®Elevate C18 1.5 mm ID column demonstrates stability and robustness in the stationary phase and the column hardware, with no significant changes to the retention time, peak shape, and back pressure.
Separation of Antidepressants Using HALO 90 Å PCS C18 Compared to C18
December 11th 2024A mix of four antidepressants is separated using the HALO®PCS (positive charged surface) C18 column demonstating the improved tailing factor and efficiency when compared to a traditional (uncharged) C18 stationary phase.
Advantage of Fused-Core® Particle Technology for Oligonucleotide Separations
December 11th 2024The HALO® OLIGO C18 2.7 µm column outperformed an FPP Oligo C18 column in oligonucleotide separations, achieving faster separations while maintaining efficiencies comparable to a 1.9 µm FPP with more than half the backpressure.
High pH and Temperature with HALO® ELEVATE C18, 1.5 mm ID Column
December 11th 2024Over the course of 5000 injections, the HALO®Elevate C18 1.5 mm ID column demonstrates stability and robustness in the stationary phase and the column hardware, with no significant changes to the retention time, peak shape, and back pressure.
Separation of Antidepressants Using HALO 90 Å PCS C18 Compared to C18
December 11th 2024A mix of four antidepressants is separated using the HALO®PCS (positive charged surface) C18 column demonstating the improved tailing factor and efficiency when compared to a traditional (uncharged) C18 stationary phase.
Advantage of Fused-Core® Particle Technology for Oligonucleotide Separations
December 11th 2024The HALO® OLIGO C18 2.7 µm column outperformed an FPP Oligo C18 column in oligonucleotide separations, achieving faster separations while maintaining efficiencies comparable to a 1.9 µm FPP with more than half the backpressure.