Special Issues
A.M. Stalcup
The analytical separations community has really made tremendous advances in the last couple of decades to satisfy the demands for higher throughput and address the increasing demands presented by the complexities of various “omics” samples (proteomics, glycomics, metabolomics, and so forth). These advances have been largely accomplished through a collective re-envisioning of separation platforms (for example, solid-phase microextraction, microfluidics, and capillary electrophoresis), mobile phases (such as supercritical fluids and enhanced fluidity), chromatographic media (for example, chiral, smaller particles, core-shell particles, monoliths, and polymerized ionic liquids), and practice (such as slip flow, ultrahigh pressures in high performance liquid chromatography [HPLC], and ultrahigh-temperature gas chromatography [GC] and HPLC). As a result, a very sophisticated material science has emerged and it is astounding that the range of analytes that can now be resolved by the separations community extends from ions to small molecules to polymers, biopolymers, cell organelles, and even cells.
The paradox is that one of the biggest challenges facing separation science is that many of our academic colleagues consider what separations scientists do as merely a necessary evil in support of “real” science and either witchcraft or trivial, while our industrial colleagues decry the declining chromatographic expertise in some of our graduates. Some of this generally low esteem (it is now more than 65 years since Martin and Synge’s Nobel prize and one cannot help but feel occasionally that some scientists would be just as happy if separations were retired) for separation science by our academic colleagues is perhaps historical as Twsett’s original work was ignored or ridiculed by his contemporaries. These attitudes may also have given rise to historically low funding for fundamental separations science research. Nevertheless, this “familiarity breeds contempt” quality arguably impacts analytical chemistry in other areas as well (for example, perhaps spectroscopy and electrochemistry). Hence, the analytical separations community might be advised to adopt strategies used by more highly regarded analytical techniques such as mass spectrometry (MS) to boost stature.
While MS is one of the oldest analytical techniques (that is, 1913: isotopes of neon), the last couple of decades have seen an incredible evolution in instrumentation and methodologies to tackle emerging analytical problems previously beyond the scope of contemporaneously available instrumentation. This was in part enabled by the coherence of the MS community in coupling advances in computer science, data management, and electronics to new interfaces and discriminatory power. However, it might also be argued that another contributory factor is that the MS community never forgot they were chemists first. This is clear from the early groundbreaking work by McLafferty relating electron impact ionization fragmentation to chemical structure (1) right through more recent work looking at hydrogen-deuterium exchange mass spectrometry and reexamination of the role of the matrix-assisted laser desorption-ionization (MALDI) matrix in ionization (2).
After a couple decades of engineering faster, better separations, it may be time for the separation science community to remember their chemical roots and bring a little supra-analytical separation science (SaSS) to the table, exploiting the dynamic chemical interactions between solute, mobile phase, and stationary phase that mask a wealth of inherent molecular information about interactions. The increasing success of chemically informed predictive retention models (for example, linear solvation energy relationships) are now approaching levels where separation science can provide a powerful enabling technology for predictions of performance and conditions to address emerging challenges (for example, pharmaceutical formulations) that were never previously considered amenable to separations-based approaches.
Finally, I want to heartily congratulate the LCGC team for LCGC North America’s 35th year of publishing! I originally encountered LCGC as a graduate student at Georgetown University. As a novice just finding my professional legs, I appreciated the accessibility of the scientific articles and the announcements of conferences, awards, and so on. Often, the first articles I read were the regular troubleshooting columns by John Dolan and John Hinshaw because the practical advice provided was particularly valuable in sorting out the mysteries of filters, ferrules, and connections, especially in academic labs where the relevant technical expertise was often in short supply. At the time, LCGC was one of the few places to find that kind of help and the spirit of open sharing of hard-earned information and a sense of a common purpose (that is, better, faster, separations) helped shape my enduring professional outlook! Over the course of my academic career, I have encouraged students to take advantage of the free subscription and used some of the material in my classes. Fortunately, I was able to leave my extensive collection of back issues when I moved to Ireland (LCGC’s reach is truly global) now that the articles are readily accessible on-line. Well done and thank you!
References
A.M. Stalcup is with the School of Chemical Sciences at Dublin City University in Dublin, Ireland.
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.