The Application Notebook
This application note describes the transfer of a conventional LC method for the analysis of antihistaminic drugs from an Agilent 1100 Series Quaternary LC to an Agilent 1260 Infinity II LC, and demonstrates that equivalent results can be obtained.
Sonja Krieger, Agilent Technologies Inc.
This application note describes the transfer of a conventional LC method for the analysis of antihistaminic drugs from an Agilent 1100 Series Quaternary LC to an Agilent 1260 Infinity II LC, and demonstrates that equivalent results can be obtained.
Introduction
Instrument-to-instrument method transfer is an important topic for all laboratories throughout different industries (1). One example is the transfer of conventional LC methods from older equipment such as the Agilent 1100 Series Quaternary LC, to new instruments such as the Agilent 1260 Infinity II LC. This application note (2)describes the analysis of antihistaminic drugs using an 1100 Series Quaternary LC. The method is transferred without any changes to the 1260 Infinity II LC, and equivalent results in terms of retention time and resolution are obtained. Furthermore, the conventional LC analysis of antihistaminic drugs can be transferred to UHPLC conditions, optimized for resolution as well as for speed, using the Agilent 1260 Infinity II LC.
Experimental Conditions
Conventional LC analysis of the antihistaminic drugs tripelenamine, chlorpheniramine, tetracaine, and promethazine was achieved with the Agilent 1100 Series Quaternary LC as well as the Agilent 1260 Infinity II LC. An Agilent ZORBAX SB-C18 column (4.6 × 150 mm, 5-μm) was used with a gradient of 25 mM potassium dihydrogen phosphate in water (pH 3) and acetonitrile at a flow rate of 1.5 mL/min and a temperature of 40 °C. Diode array detection was performed at 204 nm.
Results
The conventional LC analysis of antihistaminic drugs was transferred without any method changes from an Agilent 1100 Series Quaternary LC to an Agilent 1260 Infinity II LC. By using the Agilent 1260 Infinity II LC, excellent retention time and area precision was achieved. Figure 1 compares the retention times of the antihistaminic drugs obtained using the Agilent 1100 Series Quaternary LC and the Agilent 1260 Infinity II LC. With a maximum deviation of -1.7%, excellent agreement of retention times was observed. Further, a slight increase in resolution was achieved using the Agilent 1260 Infinity II LC. This proves the equivalency of the 1260 Infinity II LC compared to the 1100 Series Quaternary LC for the analysis of antihistaminic drugs.
Figure 1: Conventional LC analysis of antihistaminic drugs on an Agilent 1100 Series Quaternary LC and an Agilent 1260 Infinity II LC.Figure 1: Conventional LC analysis of antihistaminic drugs on an Agilent 1100 Series Quaternary LC and an Agilent 1260 Infinity II LC.
With a pressure range of up to 600 bar, the Agilent 1260 Infinity II LC also enables UHPLC analyses to be performed using Agilent InfinityLab Poroshell columns. The transfer of the conventional LC analysis of antihistaminic drugs to UHPLC conditions, optimized for resolution as well as for speed, offers the option to increase peak resolution and at the same time reduce analysis time and solvent use.
Conclusions
The transfer of a conventional LC method for the analysis of antihistaminic drugs from an Agilent 1100 Series Quaternary LC to an Agilent 1260 Infinity II LC showed a maximum retention time deviation of -1.7% as well as a slight increase in resolution, and thereby proves the equivalency of the 1260 Infinity II LC compared to the 1100 Series Quaternary LC for the analysis of antihistaminic drugs.
References
Agilent Technologies, Inc.
5301 Stevens Creek Blvd., Santa Clara, California 95051, USA
Tel: (800) 227 9770
Website: www.agilent.com
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.