The Application Notebook
Capillary flow technology (CFT) devices are microfluidic components that extend capillary GC capabilities through simple and robust connections between pressure/flow modules and columns. One of the most powerful and simple is the CFT Tee. This is especially useful in GC–MS analysis providing (1) rapid column and inlet maintenance without MSD venting and (2) the capability of rapidly removing late eluting interferences from the column by forcing their retreat into the injection port through "backflushing". Removing these interferences improves column and detector longevity and analytical integrity. Backflushing is very valuable for trace GC–MS analysis in samples from complex matrices like soil, foods or tissues. The CFT Tee uses pressure-pulsed injections and constant flow mode with minimal loss in the MS signal. This approach will be useful to all GC–MS users who want to improve their instrument uptime.
Harry Prest, Agilent Technologies Inc., Santa Clara, California, USA.
Capillary flow technology (CFT) devices are microfluidic components that extend capillary GC capabilities through simple and robust connections between pressure/flow modules and columns. One of the most powerful and simple is the CFT Tee. This is especially useful in GC–MS analysis providing (1) rapid column and inlet maintenance without MSD venting and (2) the capability of rapidly removing late eluting interferences from the column by forcing their retreat into the injection port through "backflushing". Removing these interferences improves column and detector longevity and analytical integrity. Backflushing is very valuable for trace GC–MS analysis in samples from complex matrices like soil, foods or tissues. The CFT Tee uses pressure-pulsed injections and constant flow mode with minimal loss in the MS signal. This approach will be useful to all GC–MS users who want to improve their instrument uptime.
Schematically the arrangement is shown in Figure 1. A CFT Tee splits a typical 30 m column so the configuration is simple: one 15 m column connects the split/splitless injection port to the Tee; another 15 m column from the Tee to the Agilent 5975C MSD; and the rear injection port connects to the Tee. The pressure/flow at the Tee is controlled by the rear injection port Electronic Pressure Control (EPC) module. All flow calculations were made automatically by the 7890A GC EPC. Pulsed splitless injections under constant flow mode were made of a 6 component mixture to illustrate backflushing and selectivity against late eluters.
Figure 1
The upper panel in Figure 2 shows the reconstructed total ion chromatogram (RTIC) of the 6 component standard. The last analyte is the third peak and the fourth peak the beginning of late eluting interferences. The middle panel is the RTIC of the same standard with backflushing beginning at 10.1 min (a) when the last analyte passes the Tee, enters the second column and roughly 0.4 min later enters the MSD. Backflushing begins at time (a) when the first 15 m column flow is dropped so late eluters begin to retreat in the first column while the final analyte elutes. At time (b) the second 15 m column flow is increased and the late eluters never enter the MSD but are pushed back through the first column into the injection port. The lower panel is a solvent blank run, which shows no carryover. This approach to backflushing is more rapid than "baking off" late eluters or backflushing an entire column.
Figure 2
Column maintenance is similarly simple: cool the port, raise the pressure at the Tee and cutback the column or service the liner and septum. No air will enter the MSD.
For more details, see reference 3.
(Literature Library at www.chem.agilent.com)
1. The 5975C Series GC/MSD (5989-7827EN)
2. GC/MS Analysis of PCBs in Waste Oil using the backflush capability of the Agilent QuickSwap Accessory (5989-7601EN)
3. Capillary Flow Technology for GC/MS: a simple Tee configuration for analysis at trace concentrations with rapid backflushing for matrix elimination (5989-8664EN)
Agilent Technologies Inc.
Hewlett-Packard Strasse 8, PO Box 1280
D-76337 Waldbronn, Germany
tel. +49 7243 602 107 fax +49 7243 602 501
Website: www.agilent.com
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.
GPCRs – The Biological Traffic Modulator: Chromatographic Analysis of Peptides in the GI Tract
January 20th 2025The G protein-coupled receptors (GPCR) are found throughout the entire body and have shown significance in the development of new therapeutic treatments. Isolation of seven classic GRPC peptides initiating in the GI tract highlights the benefits of using the polymer-based PRP-3, a reversed-phase resin. The covalent bonds found in the PRP-3 exhibit advantageous interactions between the biological π bonds found in the peptides and the available aromatic benzyl rings of the resin.