The Application Notebook
An effective UHPLC–MS method for high throughput separation, identification and quantification of pseudoephedrine was developed on a Hypersil GOLD PFP 1.9 µm, 2.1 Ã- 100 mm column.
Guifeng Jiang, Ray Chen and Chris Loran, Thermo Fisher Scientific Inc., San Jose, California, USA.
An effective UHPLC–MS method for high throughput separation, identification and quantification of pseudoephedrine was developed on a Hypersil GOLD PFP 1.9 µm, 2.1 × 100 mm column.
Pseudoephedrine and ephedrine are highly coveted by drug traffickers who use them to manufacture methamphetamine, for the illicit market.1 The separation and identification of pseudoephedrine from illicit drug mixtures, especially the methamphetamine group compounds, will help to identify the sources and the manufacture pathway of the methamphetamine seized in the illicit market.
We report separation, identification and quantification of pseudoephedrine in a mixture of five illicit drugs/metabolites by ultra high performance liquid chromatography–mass spectrometry (UHPLC–MS).
Instrument: Thermo Scientific Accela UHPLC system Thermo Scientific MSQ Plus
Column: Hypersil GOLD PFP 1.9 µm, 100 × 2.1 mm
Flow-rate: 1 mL/min
Mobile phase: A: Water with 0.06 % acetic acid B: Acetonitrile (ACN) with 0.06% acetic acid
Gradient:
Injection volume: 1 mL partial loop injection, 25 mL loop size
Column temperature: 45 °C
Ionization: Electrospray (ESI)
Probe temperature: 450 °C
Cone voltage: 55.0 V
Scan mode: Full scan with mass range of 100–200 m/z
ESI voltage: 4.5 kV
Pseudoephedrine was identified as the major active ingredient for all the three brand name drugs by UHPLC–MS method (Figure 1). The peak retention time of 2.62 min for all three samples matched very well with the retention time of the pseudoephedrine standard at 2.60 min. The confirmation of pseudoephedrine at 2.6 min was further assured by the match of the MS spectra of the three samples with the pseudoephedrine standard.
An internal standard method was used for the quantitative determination of pseudoephedrine in its tablet form. The concentration of the assay samples determined (120.09 ppb) were in good agreement with the reported values (120 ppb).
Figure 1
A simple, fast and reliable separation and identification method for five drugs (pseudoephedrine, ephedrine, amphetamine, methamphetamine and 3,4-MDMA) using UHPLC–MS is developed. The ppb (ng/mL) level sensitivity and accuracy by this method are more than sufficient to identify and quantify pseudoephedrine and/or other components in the seized illicit drug samples.
1. Pseudoephedrine Notice, Office of Division Control, US Department of Justice, Drug Enforcement Administration.
Thermo Fisher Scientific Inc.
355 River Oaks Parkway, San Jose, California 95134-1991, USA
tel. +1 800 532 4752 fax +1 561 688 8731
Website: www.thermo.com
The Benefits of Custom Bonded Silica
April 1st 2025Not all chromatography resins are created equal. Off-the-shelf chromatography resins might not always meet the rigorous purification requirements of biopharmaceutical manufacturing. Custom bonded silica from Grace can address a wide range of separation challenges, leading to real performance improvements. Discover more about the latest innovations in chromatography silica from Grace, including VYDAC® and DAVISIL®.
5 Things to Consider When Selecting a Chromatography Silica
April 1st 2025Particularly in the pharmaceutical industry, drug purity isn’t just a goal – it’s essential for achieving safety, stability and efficacy. However, purification is easier said than done, especially with challenging molecules like DNA and RNA “oligonucleotides,” due in large part to their diversity and the range of impurities that can be generated during production. Enter DAVISIL® chromatographic silica, with a wide range of pore diameters and particle sizes to meet your specific application, performance and sustainability requirements. Before you choose the chromatography resin for your next purification application, take a look at these 5 considerations.
Study Explores Thin-Film Extraction of Biogenic Amines via HPLC-MS/MS
March 27th 2025Scientists from Tabriz University and the University of Tabriz explored cellulose acetate-UiO-66-COOH as an affordable coating sorbent for thin film extraction of biogenic amines from cheese and alcohol-free beverages using HPLC-MS/MS.