The Application Notebook
PEGylation, the process by which polyethylene glycol (PEG) chains are attached to protein and peptide drugs is a common practice in the development of biopharmaceuticals to prolong serum half-life and improve pharmacokinetics of a drug. There is increasing demand for chromatographic methods to separate the modified isoforms from the native protein. This application note describes the use of size exclusion and ion exchange chromatography for the characterization of PEGylated lysozyme.
Werner Conze, Jessica Christel, Achim Sprauer, Volker Noedinger and Egbert Mueller, Tosoh Bioscience GmbH.
PEGylation, the process by which polyethylene glycol (PEG) chains are attached to protein and peptide drugs is a common practice in the development of biopharmaceuticals to prolong serum half-life and improve pharmacokinetics of a drug. There is increasing demand for chromatographic methods to separate the modified isoforms from the native protein. This application note describes the use of size exclusion and ion exchange chromatography for the characterization of PEGylated lysozyme.
PEGylation of proteins is a well established method to decrease in vivo clearance rate and reduce toxicity and immunogenicity of therapeutic proteins.1 While the addition of PEG groups to a protein or peptide improves its properties as a therapeutic, the addition also complicates both the separation and purification of such PEG/protein conjugates from the "non-PEGylated" protein species.2,3
The polymeric modification changes the biochemical and physical properties of the protein and will, therefore, influence the behaviour during chromatographic analysis and purification. To facilitate method development for both, analytical and preparative applications, it is important to know the influence of a covalent PEG modification on the performance of a protein on HPLC columns and chromatographic bulk media.
Size exclusion (SEC) and ion exchange chromatography (IEC) are common methods for the separation of proteins. Both modes were used to characterize the PEGylation of hen white egg lysozyme, which was used here as a model protein. The amino acid structure of lysozyme shows six lysine residues, which can serve as PEGylation reaction sides (Figure 1).
PEGylated lysozyme was produced out of methoxy-PEG-aldehyde (with a molecular weight of 5 kDa, 10 kDa and 30 kDa) and chicken white egg lysozyme in a phosphate buffer (0.1 M, pH 6.0) in the presence of sodium-cyano-borohydrid (NaCNBH3) as a reducing agent.4 The product mixture was analysed by SEC on a TSKgel G3000SWXL HPLC column and by IEC on TSKgel SP-5PW (20). Fractions were analysed subsequently by MALDI-TOF-MS.
SEC-HPLC:
Column: TSKgel G3000SWXL (7.8 mm i.d. × 30 cm L, 5 µm, 250 Å)
HPLC-system: Shimadzu LC-20A Prominence
Flow-rate: 1 mL/min
Mobile phase: 0.1 M phosphate buffer; 0.1 M Na2SO4, pH 6.7
Detection: PDA @ 280 nm
Injection volume: 20 µL
IEC-FPLC:
Column: TSKgel SP-5PW (20) (6.6 mm i.d. × 22 cm L, 20 µm, 1000 Å)
Flow-rate: 0.85 mL/min
Mobile phase: Buffer A: 25 mM phosphate buffer; 0.1 M Na2SO4, pH 6.0 Buffer B: A + 0.5 M NaCl
Detection: UV @ 280 nm
Injection volume: 100 µL
The degree of PEGylation can be easily monitored by analysing the increase in molecular weight by size exclusion analysis, as every covalently linked PEG group adds 10 kDa to the molecular weight of the native protein. TSK-GEL SWXL HPLC columns are renowned for their high efficiency in protein separations by aqueous SEC.5 (1) DiPEG-, (2) MonoPEG- and (3) native Lysozyme species could be resolved by SEC-HPLC analysis on a TSKgel G3000SWXL column (Figure 2).
Figure 3 shows the result of the cation exchange analysis of the final product of the PEGylation process. The isomers of monoPEG lysozyme and diPEG lysozyme can be further separated by ion chromatography. Depending of the affected PEGylation site (Figure 1) the voluminous PEG group shields different areas of the protein. Resulting differences in surface charge distributions are then leading to partial separation of the isoforms in IEC. Fractions 1(a) to 5 were submitted to subsequent MALDI-TOF MS analysis, which confirmed the assignment of the IEC peaks to di-, mono-, and non-PEGylated lysozyme species.
Size exclusion HPLC with TSK-GEL SWXL columns is a fast and efficient tool to monitor time, concentration and temperature depending synthesis of PEGylated lysozyme species. The SEC chromatograms show different elution volumes for monoPEG, diPEG and native lysozyme respectively. PEGylation with other molecular weight polyethylene glycols (e.g., 5 kDa or 30 kDa) could be monitored as well by using the same method parameters (data not shown). The cation exchange resin TSKgel SP-5PW(20) was successfully applied to separate various isoforms of mono-PEGylated and of di-PEGylated lysozyme. The degree of PEGylation in the collected fractions was confirmed by MALDI-TOF-MS analysis.
The authors thank Dr H. Lange and K. Darsow, Institute of Bioprocess engineering, University of Erlangen-Nuremberg, for MALDI-MS analysis.
1. J.M. Harris and R.B. Chess, Nature Reviews, 2, 214–221 (2003).
2. S.P. Monkarsh et al., Anal.Biochem., 247(2), 434–440 (1997).
3. S. Yamamoto et al., J. Biotechnol., 132(2),196–201 (2007).
4. A.S. Morar et al., BioPharm International, 19(4), 34–49 (2006).
5. B. S. Kendrick et al., Analytical Biochemistry, 299(2), 136–146 (2001).
Tosoh Bioscience GmbH
Im Leuschnerpark 4
64347 Griesheim
tel. +49 6155-7043700
fax +49 6155-8357900
E-mail: Info.tbg@tosoh.com
Website: www.tosohbioscience.de
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.
GPCRs – The Biological Traffic Modulator: Chromatographic Analysis of Peptides in the GI Tract
January 20th 2025The G protein-coupled receptors (GPCR) are found throughout the entire body and have shown significance in the development of new therapeutic treatments. Isolation of seven classic GRPC peptides initiating in the GI tract highlights the benefits of using the polymer-based PRP-3, a reversed-phase resin. The covalent bonds found in the PRP-3 exhibit advantageous interactions between the biological π bonds found in the peptides and the available aromatic benzyl rings of the resin.