Researchers have performed a volatile organic compound (VOC) analysis of coffee beans using a person-portable gas chromatography–toroidal ion-trap mass spectrometry (ppGC–TMS), and then compared it to a benchtop GC system (1).
Coffea canephora and Coffea arabica beans are amongst the most highly traded global agricultural commodities, with the beverages created from those beans incredibly popular. On top of the stimulating effects of caffeine, coffee offers a wide variety of aromas and taste profiles, with an entire sub-culture emerging to revere this plant product. A roasted coffee bean will have a complex composition from a combination of VOCs, including alcohols, esters, acids, pyrazines, phenols, and furans, amongst other compounds. All of these are a result of the many variables present in the life cycle of the food product, from plant to final brewed product. Coffee variety, growing conditions, fermentation, processing, roasting conditions, and brewing all contribute to the emergence of these unique VOC profiles. The assurance and consistency of that unique VOC profile is one of the key challenges for coffee producers. Currently, benchtop GC–MS is used for quality control and provides the gold standard for nontargeted, qualitative detection and identification of complex mixtures of VOCs. However, the separation and identification of compounds is only one half of the battle, with suitability, cost, time, and ease-of-use of the technique for implementation during the roasting process all requiring consideration.
As such, researchers investigated ppGC–TMS as an alternative solution. Theoretically, ppGC–TMS should be able to provide fast GC analysis, adequate sensitivity, and adequate selectivity, as well as the ability to be implemented at near to real-time over the duration of a coffee roasting process without the need for additional infrastructure. The researchers then compared the capabilities of ppGC–TMS to conventional GC–quadrupole time-of-flight MS (GC–QTOF-MS) and GC–quadrupole MS (GC–QMS) to contextualize the capabilities of the portable instrumentation and how associated design features alter the separation and detection of analytes.
The results of the study indicated that ppGC–TMS with headspace solid-phase microextraction (SPME) sampling provided a suitable compromise of reduced analytical capabilities for rapid and on-site analysis that could be used for VOC formation monitoring during the coffee roasting process.—L.B.
Reference
SPME GC-MS–Based Metabolomics to Determine Metabolite Profiles of Coffee
November 14th 2024Using a solid phase microextraction gas chromatography-mass spectrometry (SPME GC-MS)-based metabolomics approach, a recent study by the School of Life Sciences and Technology at Institut Teknologi Bandung (Indonesia) investigated the impact of environmental factors (including temperature, rainfall, and altitude) on volatile metabolite profiles of Robusta green coffee beans from West Java.
RP-HPLC Analysis of Polyphenols and Antioxidants in Dark Chocolate
November 13th 2024A recent study set out to assess the significance of geographical and varietal factors in the content of alkaloids, phenolic compounds, and the antioxidant capacity of chocolate samples. Filtered extracts were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC) with ultraviolet (UV) and spectrophotometric methods to determine individual phenolics and overall indexes of antioxidant and flavonoid content.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Katelynn Perrault Uptmor Receives the 2025 LCGC Emerging Leader in Chromatography Award
Published: November 13th 2024 | Updated: November 13th 2024November 13, 2024 – LCGC International magazine has named Katelynn A. Perrault Uptmor, Assistant Professor of Chemistry at the College of William & Mary, the recipient of the 2025 Emerging Leader in Chromatography Award. This accolade, which highlights exceptional achievements by early-career scientists, celebrates Perrault Uptmor’s pioneering work in chromatography, particularly in the fields of forensic science, odor analysis, and complex volatile organic compounds (VOCs) research.