Researchers from the University of Copenhagen (Denmark) have developed a novel, sensitive, and reliable analytical method to analyze phytotoxins in environmental matrices using reversed‐phase liquid chromatography with electrospray ionization high‐resolution mass spectrometry (RPLC–ESI‐HRMS).
Phytotoxins have been classified as chemicals of emerging concern (CECs) (1). This class of secondary plant metabolites has gained attention because of their impact on the environment and potential adverse affects on human health. The development of new analytical methods to analyze these compounds is therefore highly desirable, and new methods for the targeted and non‐targeted screening analysis of phytotoxins in environmental samples are in demand. The researchers from Copenhagen developed a non‐targeted RPLC–ESI‐HRMS method to identify five major groups of phytotoxins—steroids, alkaloids, flavonoids, terpenoids, and aromatic polyketides—in environmental matrices.
A novel, sensitive method for the targeted and non‐targeted screening of phytotoxins was developed. This new non‐targeted screening method was 40 times more sensitive than previous methods, according to the researchers, and allowed more than 30 phytotoxins to be identified from soil and water samples. The researchers suggested that for a balance between sensitivity, number of compounds detected, high‐throughput, and peak capacity, a mobile phase consisting of 5 mM furmic acid at pH 3.0 with a gradient of 0.95% acetonitrile over 30 min should be used for both ESI + and ESI − with a column temperature of 25 °C.
In this study, the researchers also established that the negative ionization of phenols was assisted by the number of hydroxyl groups present on the ring rather than on their substitution position. This new RPLC–ESI‐HRMS method will help to understand the fate of phytotoxins in the environment and assist in developing guidelines to monitor phytotoxins for public health, according to the researchers.
Reference
1. X. Liang, J.H. Christensen, and N.J. Nielsen, J. Chrom A. 1642, 462027 (2021).
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.