The Application Notebook
Due to the highly polar nature of saccharides, the analysis of sugars is typically achieved using hydrophilic interaction chromatography (HILIC).
Due to the highly polar nature of saccharides, the analysis of sugars is typically achieved using hydrophilic interaction chromatography (HILIC). Using a high polarity packing material, separation is based on the hydrophilic interactions of the sugars on the stationary phase surface typically using an eluent with a majority of polar organic solvent.
HILIC columns with amino functional groups are often used to prevent the separation of anomers; however, one drawback of the amino functional group on the packing material is the low recovery rate of reducing sugars, such as glucose and mannose. Reducing sugars are able to adhere to the packing material through the formation of a Schiff base, and must be hydrolyzed with acid for removal.
Shodex introduces the VG-50 4D column packed with a durable polymer based packing material modified with chemically stable tertiary amino functional groups. Shodex VG-50 4D is suitable for saccharide analysis, has demonstrated the separation of reducing sugars, and has been compared to two competitor silica-base amino columns.
The analysis of four saccharides is accomplished with Shodex VG-50 4D (4.6 mm I.D. × 150 mm, 5 µm), a polymer-based amino HILIC column. The separation is compared to the same analysis using two silica-based amino columns under the same conditions. Column temperature was 40 °C and flow rate was 0.4 mL/min for the VG-50 4D analysis and 1.0 mL/min for the silica-based amino analyses. Eluent conditions are 80% acetonitrile in water. Injection volume of 5 µL of 5 mg/mL of each sugar was used for each experiment. The HPLC system was coupled with RI detector.
Figure 1: The analysis of sugars using VG-50 4D and two silica-based amino columns. Column: Shodex VG-50 4D (top) and silica-based amino columns (middle and bottom); column temperature: 40 °C; injection volume: 5 µL; eluent: CH3CN/H2O = 80/20; flow rate: 0.4 mL/min for VG-50 4D and 1.0 mL/min for silica columns. Detector: Shodex RI. Sample: 1. fructose, 2. mannose, 3. glucose, and 4. sucrose.
The saccharides, fructose, mannose, glucose, and sucrose, were analyzed successfully by HPLC and RI detection with VG-50 4D and two silica-based amino columns (Figure 1). A comparison of the recovery ratio of mannose, a reducing sugar, in relation to sucrose, a nonreducing sugar, is demonstrated in Figure 2. Shodex VG-50 4D demonstrates baseline separation of the four sugars with an elution volume of 20 min and allows up to 90% recovery rate of mannose. Silica-based amino column 1 shows baseline separation of the four compounds. However, the recovery ratio of reducing sugars is 40%. Silica-based amino column 2 cannot separate the four sugars, and the recovery ratio is less than 20%.
Figure 2: Comparison of Shodex VG-50 4D and silica-based amino columns demonstrating recovery ratio of mannose. Recovery ratio = (peak area mannose)/(peak area sucrose).
Shodex VG-50 4D, a polymer-based hydrophilic interaction (HILIC) chromatography column suitable for saccharide analysis, has demonstrated the recovery ratio of reducing sugars compared with silica-based amino columns.
Shodex™/Showa Denko America, Inc.
420 Lexington Avenue, Suite 2335A, New York, NY, 10170
tel. (212) 370-0033 x109
Website: www.shodex.net
Automated Sample Preparation (ISO 20122) for MOSH/MOAH in Seasoning Oils
May 6th 2025This work presents an Automated Sample Preparation procedure for MOSH/MOAH analysis of Seasoning Oils. We compare results from a manual epoxidation procedure compliant with DIN 16995 with results based on fully automated sample preparation (epoxidation and saponification) compliant with ISO 20122. In both cases, online clean-up via activated aluminum oxide (AlOx) are used to remove interfering n-alkanes from the MOSH fraction during the HPLC run. Automated data evaluation using a dedicated software (GERSTEL ChroMOH) is presented.
Free Poster: NDSRI Risk Assessment and Trace-Level Analysis of N-Nitrosamines
April 25th 2025With increasing concern over genotoxic nitrosamine contaminants, regulatory bodies like the FDA and EMA have introduced strict guidelines following several high-profile drug recalls. This poster showcases a case study where LGC and Waters developed a UPLC/MS/MS method for quantifying trace levels of N-nitroso-sertraline in sertraline using Waters mass spectrometry and LGC reference standards.
New TRC Facility Accelerates Innovation and Delivery
April 25th 2025We’ve expanded our capabilities with a state-of-the-art, 200,000 sq ft TRC facility in Toronto, completed in 2024 and staffed by over 100 PhD- and MSc-level scientists. This investment enables the development of more innovative compounds, a broader catalogue and custom offering, and streamlined operations for faster delivery. • Our extensive range of over 100,000 high-quality research chemicals—including APIs, metabolites, and impurities in both native and stable isotope-labelled forms—provides essential tools for uncovering molecular disease mechanisms and exploring new opportunities for therapeutic intervention.