LCGC Asia Pacific
Waters Application Note
Kenneth J. Fountain, Hillary Hewitson and Damian Morrison, Waters Corporation, Milford, Massachusetts, USA.
Transferring LC methods between instruments and/or laboratory sites is a common practice that allows analytical scientists to maximize equipment usage. Although common, method transfer can be a difficult task. Differences in the properties of the LC system and/or the ratio of the column volume to the system volume can produce gradient profiles that are inconsistent between the original method and the transferred method. The separation power and selectivity of the column must also remain constant when transferring from one LC to another, or when changing particle size. Complexity is added when methods are transferred between different technology platforms such as HPLC and UPLC.
In this application, a method for clozapine and four impurities is transferred from UPLC to HPLC using the ACQUITY UPLC H-Class system. Selectivity of the separation is preserved by using columns with the same stationary phase that differ only in particle size. A new columns calculator is used to maintain the gradient profile regardless of the instrument used for the separation. The resulting separations demonstrate the ability of the ACQUITY UPLC H-Class and column chemistries to facilitate methods transfer for any HPLC or UPLC separation.
Gradient, flow rate and injection volumes are specified in the figure captions. Calculations to preserve the gradient profile were performed with the new ACQUITY UPLC columns calculator.
Figure 1(a) shows the separation of the clozapine sample on a 2.1 × 50 mm, 1.7 μm BEH Shield RP18 column at high pH. All impurities were sufficiently resolved from the main active ingredient. This method was then transferred to an HPLC system using a column with identical resolving power and selectivity [Figure 1(b)]. The system dwell volumes were measured and input into the ACQUITY UPLC columns calculator to maintain the same gradient profile. Note that the selectivity between the two separations is identical and the relative retention times of each impurity to clozapine is maintained (Table 1).
Figure 1
The separation shown in Figure 1(b) was then transferred from the HPLC system back to the ACQUITY UPLC H-Class system to demonstrate the ability of the latter instrument to run both HPLC and UPLC separations. The resulting separation is shown in Figure 2(b). The gradient profile was maintained by accounting for the gradient delay volume of the HPLC and UPLC systems. Again, Table 1 shows that there is no difference in the relative retention times of all clozapine impurities, regardless of the system or column used.
Figure 2
The combination of the ACQUITY UPLC H-Class system and column method transfer kits facilitates the transfer of LC methods between HPLC and UPLC platforms. This allows methods to be easily transferred between systems, laboratories and sites across the world without compromising separation performance.
Table 1: Relative retention times of impurities to clozapine for HPLC and UPLC separations.
©2010 Waters Corporation. Waters, The Science of What's Possible, ACQUITY UPLC, XBridge and Alliance are trademarks of Waters Corporation.
Waters Corporation
34 Maple Street, Milford, Massachusetts 01757
tel. +1 508 478 2000, fax +1 508 478 1990
Website: www.waters.com
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.