Waters Application Note
Fast, flexible platforms for peptide quantification are needed, particularly for a discovery setting. This type of methodology would be especially advantageous in the case of amyloid beta (aβ) peptides. The deposition/formation of insoluble aggregates, or plaques, of aβ peptides in the brain is considered to be a critical event in the progression of Alzheimer's disease (AD) and thus has the attention of many researchers. A previous Waters application note (720003682en) described in detail the development of a fast, flexible SPE–LC–MS–MS platform for the quantification of multiple aβ peptides from human or monkey CSF for use in a biomarker or preclinical discovery setting. In this work, the mass spectrometry platform has been updated from the Xevo TQ MS to the Xevo TQ-S mass spectrometry system. This change facilitated both a 4× reduction in required sample size and a 4–5× increase in assay sensitivity. This work focuses on methods for the 1-38, 1-40 and 1-42 aβ (Table 1).
Table 1: Sequence, MW and pI information for amyloid peptides.
SPE-LC–MS–MS Conditions
LC system: Waters ACQUITY UPLC System
Column: ACQUITY UPLC BEH C18 300 Å, 2.1 × 150 mm, 1.7 µm, Peptide Separation Technology
SPE: Oasis MCX µElution 96-well plate, 50 µL human or animal CSF
MS system: Waters Xevo TQ-S, ESI+
• An improved SPE–UPLC–MS–MS bioanalytical method was developed and validated for the simultaneous quantification of multiple amyloid β peptides in human CSF.
Figure 1: Representative ESI+ MS-MS spectrum for amyloid 1-42 with fragment sequence ions labelled.
• MS was performed in positive ion mode since CID of the 4+ precursor ion yielded several distinct product ions corresponding to inherently specific b sequence ions (representative spectrum shown in Figure 1).
• UPLC separation of the three amyloid β peptides is shown in Figure 2.
Figure 2: Representative UPLCâMSâMS analysis of amyloid 1-38, 1-40 and 1-42 peptides extracted from artificial CSF + 5% rat plasma.
• The increased sensitivity of the Xevo TQ-S triple quadrupole mass spectrometer facilitated the use of 4× less sample and a 4–5× improvement in quantification limits (Table 2).
Table 2: Comparison of Standard Curve and QC range using Xevo TQ and TQ-S MS.
• Average basal levels and RSD values for all 3 aβ peptides in 2 sources of human CSF are shown in Table 3 and are lower or equal to 5%.
Table 3: Baseline levels of amyloid peptides in 2 sources of pooled human CSF.
• Overspiked QC samples were prepared in triplicate in 2 sources of pooled human CSF at 0.04, 0.075, 0.15, 0.2, 0.8, 2 and 6 ng/mL. Accuracy and precision values met the regulatory criteria for LC–MS–MS assays. Results from QC sample analysis are shown in Table 4. Average deviation from expected is 2.3%.
Table 4: Average deviation values for all overspike QC samples
• The method described herein eliminates time-consuming immunoassays or immunoprecipitation steps for pre-clinical work.
• The use of a single UPLC–MS–MS assay represents a significant advantage over an ELISA assay, which would require multiple assays with multiple antibodies to quantify each of the relevant peptides.
Copyright 2011: ACQUITY UPLC, Oasis, The Science of What's Possible, Xevo are trademarks of Waters Corporation.
Waters Corporation
34 Maple Street, Milford, Massachusetts 01757, USA
tel. +1 508 478 2000 fax +1 508 478 1990
Website: www.waters.com
USP CEO Discusses Quality and Partnership in Pharma
December 11th 2024Ronald Piervincenzi, chief executive officer of the United States Pharmacoepia, focused on how collaboration and component quality can improve worldwide pharmaceutical production standards during a lecture at the Eastern Analytical Symposium (EAS) last month.
RAFA 2024: Giorgia Purcaro on Multidimensional GC for Mineral Oil Hydrocarbon Analysis
November 27th 2024Giorgia Purcaro from the University of Liège was interviewed at RAFA 2024 by LCGC International on the benefits of modern multidimensional GC methods to analyze mineral oil aromatic hydrocarbons (MOAH) and mineral oil saturated hydrocarbons (MOSH).