A study published in the journal Analytical Chemistry presents the application of a foodomics approach – combining transciptomics with metabolomics – to determine the anticancer mechanism of action of polyphenols contained in Rosmarinus officinalis L., commonly known as rosemary.1
Photo Credit: Creativeye99/Getty Images
A study published in the journal Analytical Chemistry presents the application of a foodomics approach — combining transciptomics with metabolomics — to determine the anticancer mechanism of action of polyphenols contained in Rosmarinus officinalis L., commonly known as rosemary.1
The major compounds in rosemary are carnosic acid (CA) and carnosol (CS) that, according to the paper, account for more than 90% of the antioxidant activity of rosemary leaves although only make up 5% of dried rosemary leaves. Corresponding author Virginia García-Cañas told The Column: “Our studies on the chemical composition indicated that the most potent extracts on inhibiting cell proliferation were richer in medium to low polarity phenolic compounds (in this instance, carnosic acid and carnosol).” She added: “In addition, carnosic acid has been the focus of different research works that have concluded that this compound may have not only anti-proliferative activities but also anti‑inflammatory properties and neuroprotective activities, besides its well‑known antioxidant capacity.”
Colon adenocarcinoma HT-29 cells were exposed to varying concentrations of rosemary extract, CA, and CS to determine the effect of treatment on cell cycle progression. Following treatment, comparative transcriptomics was performed to determine differences in gene expression dependent on treatment. Metabolic profiles were determined using capillary electrophoresis time-of-flight mass spectrometry (CE–TOF-MS) and hydrophilic interaction chromatography/ultrahigh‑performance liquid chromatography (HILIC/UHPLC–TOF-MS).
The authors found that CA activated the expression of genes encoding detoxifying enzymes and altered the expression of genes associated with the transport and biosynthesis of terpenoids. García-Cañas told The Column: “This approach provides new and unique opportunities to unravel the molecular mechanisms underlying the bioactivity of the compounds under study. Thus, foodomics helps on achieving high reliability on the results since it enables different dimensions (or levels of molecular information) of the same pathway, biological function, or process to be explored.” — B.D.
Reference
A. Valdés et al., Analytical Chemistry86, 9807–9815 (2014).
This story originally appeared in The Column. Click here to view that issue.
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.