Great advances have been made in the field of miniaturization of mass spectrometers, opening up the potential to save time by performing analysis in the field; however, sample preparation has yet to catch up. A new study published in the journal Analytical Chemistry demonstrates the application of microfluidics integrated with a miniature mass spectrometer for the detection of illicit drugs in dried urine samples, which can simultaneously analyze four samples in under 15 min.
Photo Credit: Getty Images/Science Photo Library
Great advances have been made in the field of miniaturization of mass spectrometers, opening up the potential to save time by performing analysis in the field; however, sample preparation has yet to catch up. A new study published in the journal Analytical Chemistry demonstrates the application of microfluidics integrated with a miniature mass spectrometer for the detection of illicit drugs in dried urine samples, which can simultaneously analyze four samples in under 15 min.1
Various samples can be taken from people to screen for illicit drug intake, from hair to blood, but urine is the most commonly sampled because it is readily available in large volumes. Urine samples are typically screened using portable immunoassays, and, if a positive result is found, are forwarded to the laboratory for confirmation by gas chromatography (GC) or high performance liquid chromatography (HPLC) analysis. Aaron Wheeler, from the Institute of Biomaterials and Biomedical Engineering at the University of Toronto in Canada, told The Column: “We need ‘laboratory-quality’ techniques that are portable, suitable for analysis in the field. Mass spectrometry and sample handling are key pieces to laboratory‑quality results, and my collaborator, Graham Cooks (Purdue University), and I thought we could put together a new method in this area that would be useful.”
Urine samples were spiked with cocaine, benzoylecgonine, codeine, mepivacaine, and cocaine-d3. The microfluidics system was set up to deliver 22 μL of extraction solvent to each of the dried urine spots where it would be incubated for 5 min and then subsequently directed to a nano electrospray ionization (nanoESI) emitter. Wheeler said: “Working with ‘real samples’ (rather than standards in buffer) is always challenging. In this work, we analyzed drugs in urine, which is salty (not a perfect match for mass spectrometry) and forms solid crystals when it dries (not a perfect match for microfluidics). We worked through many iterations to solve these problems, eventually finding success by incorporating an in-line desalting step, and a device format relying on hydrophilic anchors to immobilize solid samples.”
For those who would like to learn more, Wheeler said: “We are eager for researchers to try the technique — a good place to start is by using our open-source ‘DropBot’ system, with code, schematics, assembly instructions, and more on-line at http://microfluidics.utoronto.ca/dropbot/.” - B.D.
Reference
1. A.E. Kirby, N.M. Lafreniere. B. Seale, P.I. Hendricks, R.G. Cooks, and A.R. Wheeler, Analytical Chemistry86, 6121– 6129 (2014).
This story originally appeared in The Column. Click here to view that issue.
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.