Researchers from the University of Western Australia's Centre for Forensic Science have collaborated with the University of Turin's Department of Chemistry in Italy to develop a gas chromatography–mass spectrometry (GC–MS) method to analyze levels of methamphetamine (MA) in blowflies (Calliphora vomitoria L.).
Photo Credit: Getty Images/Rob Ault
Researchers from the University of Western Australia’s Centre for Forensic Science have collaborated with the University of Turin’s Department of Chemistry in Italy to develop a gas chromatography–mass spectrometry (GC–MS) method to analyze levels of methamphetamine (MA) in blowflies (Calliphora vomitoria L.). The method published in the journal Forensic Science International could be performed by forensic scientists collecting evidence related to cause of death in cases of suspected methamphetamine use or overdose.
Blowflies are one of the first insects to colonize decomposing tissue hours after death. Their life-stages are characterized by different body structure and composition, and so can be used as a stopwatch of how long decomposition has been occurring. In cases of suspected toxin exposure where decomposition has progressed, blowflies that have fed on the corpse can be analyzed to detect suspected toxins. Paola Magni, corresponding author of the paper, told The Column: “Several studies have demonstrated that the toxicological analyses of insect material are able to provide a more reliable and sensitive result than from highly decomposed remains (both corpse and carcasses). Many substances (drugs, pesticides, and toxic metals) have been detected in insect tissues, and a relationship between the drug found in the substrate and insects reared on that substrate have been determined.”
Blowfly colonies were reared on beef liver samples spiked with either 5 ng/mg or 10 ng/mg of methamphetamine; concentrations associated with human deaths and sometime with fatal overdose. Larvae and adults were sampled at regular intervals and prepared for analysis by GC–MS. Magni said: “The present research shows the development of a suitable analytical method using GC–MS to detect this drug in larvae, pupae, spent pupae, and adults of C. vomitoria.”
The researchers were able to successfully detect methamphetamine in the blowflies sampled. Furthermore, they observed that methamphetamine ingestion increased the time for development from egg to adult, 60% of larvae died during pupation, and surviving larvae and pupae were larger than controls. Magni told The Column: “The sampling of the flies should be done following the best practices in forensic entomology. For chemical analyses the samples are stored at -20 °C until MA is extracted; for morphological analyses using hot water and ethanol to maintain their structural features. The chemical process of extraction of MA has to be performed carefully because the insect samples are not ‘clean’ and can leave residues that cause problems in the GC–MS instrument.” - B.D
Reference
1. P.A. Magni, T. Pacini, M. Pazzi, M. Vincenti, and I.R. Dadour, Forensic Science International 241, 96–101 (2014).
This story originally appeared in The Column. Click here to view that issue.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.