Scientists from the National Institute of Standards and Technology (NIST) have demonstrated the application of PLOT-cryoadsorption (PLOT–cryo) coupled to gas chromatography–mass spectrometry (GC–MS) for the analysis of ignitable liquid (IL) residues in fire debris.
Scientists from the National Institute of Standards and Technology (NIST) have demonstrated the application of PLOT-cryoadsorption (PLOT–cryo) coupled to gas chromatography–mass spectrometry (GC–MS) for the analysis of ignitable liquid (IL) residues in fire debris. According to the study published in the Journal of Chromatography A, the method can simultaneously collect vapours from up to eight sample vials at the same time.1
When investigating the scene of a fire investigators look for evidence of ignitable liquids, such as gasoline and petrol. Debris is collected at the scene in sealed paint tins, and is then transported back to the laboratory for testing. According to the study, the most common way to sample the headspace is to use activated charcoal. The strip is held above the headspace for 2–16 h before it is extracted and analyzed using GC–MS.
Eleven different ignitable liquids were applied to Douglas fir, plywood, and nylon carpet and subsequently burnt. The charred remains were then collected into a sealed vial, before the vapours were adsorbed to short porous layer open tubular (PLOT) columns at low temperature. The capillaries were then eluted and analyzed using GC–MS.
Sampling the headspace took 3 min opposed to the 2 to 6 h typically required for the carbon strip method. The columns were then eluted and the resulting factions analyzed using GC–MS. The PLOT-cryo method was more sensitive than purge-and-trap cartridges or carbon strip sampling, and could be used with up to 7 different sorbent phases simultaneously. Furthermore, the method could be used on samples from 50 mg up to 1 kg. Thomas Bruno, corresponding author of the paper, told The Column: “Fire debris analysis can be challenging because of background interference and the low concentrations of target analytes. Since the PLOT‑cryo method of headspace collection is sensitive, selective, and fast, it offered many advantages when compared to usual methods.” - B.D.
Reference
1. J.E. Nichols, M.E. Harrie, T.M. Lovestead, and T.J. Bruno, Journal of Chromatography A1334, 126–138 (2014).
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.