The Application Notebook
Methacholine chloride is a synthetic analogue of the neurotransmitter acetylcholine used to assess bronchial asthma of subjects in respiratory function labs and epidemiological field studies.
Richard Kornfeld and Jeffrey Rohrer, Dionex Corporation, Sunnyvale, California, USA.
Methacholine chloride is a synthetic analogue of the neurotransmitter acetylcholine used to assess bronchial asthma of subjects in respiratory function labs and epidemiological field studies.1 Methacholine has been shown to decompose over time.2 Hydrolysis will yield β-methylcholine and acetic acid. Acetylcholine, a potential synthetic impurity, may also be present in the powder.
Choline and its analogues have been determined using ion chromatography (IC) in various matrices such as prescription and nonprescription medications, milk and infant formula, and vitamin and mineral formulations (3 and references cited therein). This contribution demonstrates that a cation RFIC system can determine methacholine, acetylcholine and β-methylcholine with high precision, high recovery and excellent day-to-day reproducibility. We use anion IC to determine acetate. The first method can assay methacholine and the combination of both methods can determine methacholine's related substances.
Analyses are performed using a Dionex ICS-2100, AS autosampler and Chromeleon Chromatography Data System software. Cation separations use an IonPac CG/CS17 column set with electrolytically generated MSA eluent, while anion separations use an IonPac AG/AS22 column set with manually prepared carbonate/bicarbonate eluent. For detailed experimental conditions, see Dionex Application Note 249.
The method for methacholine assay includes diluting the initial solution (25 g/L methacholine in 0.9% sodium chloride with or without 0.4% phenol) 1000-fold with water. Excellent linearity (R2 > 0.9999), spike recovery (97–100%), 5-day retention time (<0.05%), and peak area (<0.4%) RSDs were observed for methacholine.
The method for potential methacholine impurities includes diluting the initial methacholine solution 100-fold with water. Figure 1 shows the cation IC of 2.5 mg/L acetylcholine in diluted methacholine-containing matrix. A peak for β-methylcholine is observed in both the matrix blank and acetylcholine-spiked matrix at approximately 0.1% of the methacholine concentration. MDL estimates for β-methylcholine and acetylcholine are at single-digit µg/L levels while the estimate for acetate MDL is 75 µg/L. Excellent linearity (R2 > 0.9998) for target impurities are observed. Recoveries of target impurities spiked at 2.5 mg/L range from 85–95%. Highly reproducible retention times (0.1% or less) and peak areas (<0.8%) are observed for the choline-based analytes over a 5-day study.
Figure 1: Cations in 100:1 dilution of 25 g/L methacholine + 0.9% NaCl + 0.4% phenol matrix. Conditions: IonPac CG/CS17 (4 mm) column set at 30 °C, 5 mM methanesulphonic acid, 1.0 mL/min, 25 µL injection, suppressed conductivity (recycle mode). Trace A: matrix blank. Trace B: 2.5 mg/L acetylcholine in diluted matrix. Peaks: 1 = sodium, 2 = β-methylcholine, 3 = acetylcholine, 4 = methacholine and 5 = calcium.
This note presents IC-based methods for the detection and quantification of methacholine and potential impurities in solutions used to assess bronchial asthma. These assays only require simple dilutions with deionized water and demonstrate excellent precision and accuracy for both methacholine and for potential impurities present in amounts approaching 1%.
1. Guidelines for Methacholine and Exercise Challenge Testing – 1999. Am. J. Respir. Crit. Care Med., 161, 309–329 (2000).
2. R.D. Hayes et al., Eur. Respir. J., 11, 946–948 (1998).
3. Dionex Corporation. Application Note 194 (LPN 1967, April, 2008).
Chromeleon and IonPac are registered trademarks of Dionex Corporation.
Dionex Corporation
1228 Titan Way, PO Box 3603, Sunnyvale, California 94088, USA
tel. +1 408 737 0700 fax +1 408 730 9403
Website: www.dionex.com
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
6PPD-Quinone Reference Materials
November 19th 2024Ensure environmental and consumer health with our standards for 6PPD-quinone testing. 6PPD-quinone has been detected in the environment and has shown toxicity to aquatic life. Chiron, by Zeptometrix® offers reference standards suitable for Draft EPA Method 1634.
Current and Future Advancements in PFAS Research
November 19th 2024This white paper explores the health risks, environmental impacts, and detection technologies associated with PFAS, along with the latest advancements in PFAS research. It also provides an overview of the regulatory landscape and emphasizes the crucial role of companies like ZeptoMetrix® in supplying PFAS reference materials, which are essential for ensuring the accuracy of testing. Lastly, the paper outlines key areas for future PFAS research.
Microplastics Reference Materials
November 19th 2024The World’s First Microplastics Reference Materials. Our scientists have focused on these emerging global threats, and are excited to share Chiron MicroPrefs®, the first commercial microplastic reference material. The MicroPref® portfolio is designed to detect the six most abundant plastics in the environment and is available in a novel, easy-to-use tablet formulation. Be among the first labs to join in the fight against microplastic pollution by exploring the NEW line of Chiron MicroPrefs® microplastic standards.