Researchers from Postnova have used asymmetrical flow field-flow fractionation coupled to AF4-MALS to successfully characterize a polydisperse cellulose nanocrystal for size and thickness.
Photo Credit: GiraoScience/stock.adobe.com
Researchers from Postnova have used asymmetrical flow field-flow fractionation coupled to multi-angle light scattering (AF4-MALS) to successfully characterize a polydisperse cellulose nanocrystal (CNC) for size and thickness (1).
Nanocrystal research has been an area of significant interest because of a growing range of applications in advanced materials, biomedical, environmental, optical, and semiconductor fields. Their attractive properties, including low thermal expansion, optical transparency, renewability, biodegradability, low toxicity, and low cost, lend themselves to many industrial applications, such as polymer reinforcing, photonic crystals, drug delivery, water treatment membranes, and biomedical devices (2). However, a thorough size characterization is necessary as their rheological and control processing properties can be affected by their size, shape, and surface area.
Current bulk characterization techniques for crystal characterization include transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic light scattering (DLS), however, AF4-MALS offers a significant improvement in analysis time as well as resolution, according to the study authors (3).
Researchers used a cellulose nanocrystal sample, isolated from softwood sulphite pulp, and analyzed it using AF4-MALS to measure the length and thickness of the crystals as a function of size. The results were then confirmed using the established method of AFM analysis. Results indicated that AF4-MALS was successfully employed to characterize the polydisperse CNC sample in a relatively short analysis time of 40 min.
References
Investigating the Protective Effects of Frankincense Oil on Wound Healing with GC–MS
April 2nd 2025Frankincense essential oil is known for its anti-inflammatory, antioxidant, and therapeutic properties. A recent study investigated the protective effects of the oil in an excision wound model in rats, focusing on oxidative stress reduction, inflammatory cytokine modulation, and caspase-3 regulation; chemical composition of the oil was analyzed using gas chromatography–mass spectrometry (GC–MS).
Evaluating Natural Preservatives for Meat Products with Gas and Liquid Chromatography
April 1st 2025A study in Food Science & Nutrition evaluated the antioxidant and preservative effects of Epilobium angustifolium extract on beef burgers, finding that the extract influenced physicochemical properties, color stability, and lipid oxidation, with higher concentrations showing a prooxidant effect.
Rethinking Chromatography Workflows with AI and Machine Learning
April 1st 2025Interest in applying artificial intelligence (AI) and machine learning (ML) to chromatography is greater than ever. In this article, we discuss data-related barriers to accomplishing this goal and how rethinking chromatography data systems can overcome them.