SEC-MALS analysis of cellulose provides absolute molar mass distributions to understand the impact of different extraction processes. The biopolymer is solubilized in DMAC, enabling liquid chromatography without degradation.
SEC-MALS analysis of cellulose provides absolute molar mass distributions to understand the impact of different extraction processes. The biopolymer is solubilized in DMAC, enabling liquid chromatography without degradation.
Cellulose, a biopolymer of great importance to the fibre and paper industries, is difficult to characterize because of its high molar mass. Its intractable nature means it cannot be dissolved in conventional solvents without chemical modification. With tedious effort, it can be modified so that it can be dissolved in an easy-to-use solvent like THF, but when the cellulose is so modified it is degraded and the analysis does not represent the source material.
Unmodified cellulose can be dissolved in dimethyl acetamide (DMAC) with LiCl added. The problem remains: how to characterize it without reference to column calibration standards that typically do not have the same conformation as cellulose. Absolute characterization is performed by combining multi-angle light scattering with size-exclusion chromatography (SEC-MALS) to determine molar mass, independently of elution standards.
Experimental Conditions
Separations were performed on a set of SDV-GPC columns in DMAC and LiCl. The separation columns were followed by the HPLC’s UV detector, a DAWN® MALS detector (Wyatt Technology), and an Optilab® differential refractive index (dRI) detector (Wyatt Technology).
Data collection and analysis were performed in the ASTRA® software (Wyatt Technology) using empirically determined differential refractive index increments (dn/dc). Polymer molar mass, M, was calculated at each elution volume using signals from the two detectors.
Results
Molar masses determined by MALS in Figure 1 follow the usual logarithmic variation with elution volume. For the sake of comparison, a run of two mixed polystyrene standards was overlaid in a plot of molar mass versus elution volume. As can be clearly seen, a calibration based on polystyrene standards would overestimate the molar mass by more than a factor of five. This discrepancy is usually a result of branching, typical for cellulose in the MW range of 105–106 and above.
Figure 1: Two narrow polystyrene standards and a cellulose. Note that at the same elution volume, the standard gives a molar mass 10 times larger than the cellulose value.
The technical process of extracting the cellulose from the wood pulp can have a profound effect on the molar mass distributions. Figure 2 shows the differences in molar mass distributions arising from different extraction processes. Only a MALS detector can reveal and quantify those differences and thereby MALS has become an important tool in optimizing the production processes for cellulose.
Figure 2: ASTRAs Differential Weight Distribution plot shows how different extraction processes create large variations in cellulose molar mass distributions.
Conclusions
The SEC-MALS results prove that the lengthy process of solubilizing the cellulose has been mastered, enabling the manufacturer to optimize the cellulose extraction process.
Wyatt Technology
6330 Hollister Avenue, Santa Barbara, California 93117, USA
Tel.: +1 (805) 681 9009
Website: www.wyatt.com
The Benefits of Custom Bonded Silica
April 1st 2025Not all chromatography resins are created equal. Off-the-shelf chromatography resins might not always meet the rigorous purification requirements of biopharmaceutical manufacturing. Custom bonded silica from Grace can address a wide range of separation challenges, leading to real performance improvements. Discover more about the latest innovations in chromatography silica from Grace, including VYDAC® and DAVISIL®.
5 Things to Consider When Selecting a Chromatography Silica
April 1st 2025Particularly in the pharmaceutical industry, drug purity isn’t just a goal – it’s essential for achieving safety, stability and efficacy. However, purification is easier said than done, especially with challenging molecules like DNA and RNA “oligonucleotides,” due in large part to their diversity and the range of impurities that can be generated during production. Enter DAVISIL® chromatographic silica, with a wide range of pore diameters and particle sizes to meet your specific application, performance and sustainability requirements. Before you choose the chromatography resin for your next purification application, take a look at these 5 considerations.
Automating Protein Purification: Efficiency, Yield, and Reproducibility
March 27th 2025Recent advancements in automated protein purification stress the importance of efficiency, scalability, and yield consistency. This eBook compares different purification platforms, highlighting their impact on downstream applications and demonstrating how automation enhances throughput and process control.
MilliporeSigma: Ultrapure Water for Sensitive LC-MS Analysis of Pesticides
March 25th 2025The aim of the study was to illustrate the efficiency of Milli-Q® water purification systems in eliminating pesticides from tap water, thereby producing and delivering reliable and consistent-quality ultrapure water suitable for pesticides analysis