The Application Notebook
This application note shows the pyrolysis-GC×GC–HRMS profiles of crude oils for more detailed separations and more complete characterization of complex matrices, especially on the speciation of heteroatoms such as sulphur-containing compounds.
This application note shows the pyrolysis-GC×GC–HRMS profiles of crude oils for more detailed separations and more complete characterization of complex matrices, especially on the speciation of heteroatoms such as sulphur-containing compounds.
Pyrolysis, coupled to comprehensive two-dimensional gas chromatography-high resolution mass spectrometry (pyGC×GC–HRMS), is a very powerful technique for the characterization of complex, heavy matrices such as crude oils. The two-dimensional resolution provides enhanced separation of the pyrolysis products, leading to improved classification for groups and individual analytes. Additionally, the 2D pyrograms make sample comparison easier and more informative. Here we show the use of py-GC×GC for improved characterization and comparison of crude oils and the advantages arising from HRMS detection for speciation of heteroatoms such as sulphur-containing compounds.
Experimental Details
Three different crude oil samples were pyrolyzed at 750 °C for 15 s using a CDS Pyroprobe coupled to an Agilent 7890B GC equipped with a Zoex ZX2 cryogen-free thermal modulator and an Agilent 7200B QTOF detector.
Results and Discussions
Figure 1 shows the 2D separation obtained for the crude oils with corresponding percent response for paraffins, naphthenes and olefins, and aromatics (green). The two-dimensional chromatographic separation allows for the efficient separation of different chemical groups fully coeluting on the nonpolar primary column and are hereby effectively separated based on polarity on the second dimension. The 2D plots include a template designed to outline the distribution of the main aliphatic and aromatics hydrocarbons groups. The amount of each group is clearly different in the three samples: sample B is mostly aromatic, with significant paraffinic content and very low in naphthenes; samples A and C are mostly naphthenic, but sample C has more paraffins while being clearly poorer in aromatics.
Figure 1: TIC 2D plots for crude oil A (top), B (middle), and C (bottom) and corresponding calculated percent response for paraffins (blue), naphthenes and olefins (red), and aromatics (green) for each sample.
Given their high relevance for the petrochemical industry, we focused on evaluating the presence of sulphur-containing compounds of potential interest. Figure 2 shows part of a template that indicates the location of the dibenzothiophenes with different degrees of alkyl-substitution, constructed by looking for the masses corresponding to the specific molecular formulas. This figure shows the example for dibenzothiophenes with three methyl groups. These are fully separated by the large aliphatic signal on the secondary column, making detection and identification (and potentially quantification) much easier and more accurate. Numerous isomers are present, differing only on the position of the alkyl-substitutions. Some blobs are fully coeluting on the primary column and, given the fact that the MS spectra will be close to identical, can be resolved and distinguished as different compounds only thanks to the enhanced two-dimensional resolving power.
Figure 2: TIC 2D plot (left) and selected ion chromatogram (right) with template showing the location of dibenzothiophene (DBT) groups with different degree of alkyl-substitution for sample A.
CDS Analytical
465 Limestone Road
Oxford, Pennsylvania 19363, USA
Website: www.cdsanalytical.com
The Benefits of Custom Bonded Silica
April 1st 2025Not all chromatography resins are created equal. Off-the-shelf chromatography resins might not always meet the rigorous purification requirements of biopharmaceutical manufacturing. Custom bonded silica from Grace can address a wide range of separation challenges, leading to real performance improvements. Discover more about the latest innovations in chromatography silica from Grace, including VYDAC® and DAVISIL®.
5 Things to Consider When Selecting a Chromatography Silica
April 1st 2025Particularly in the pharmaceutical industry, drug purity isn’t just a goal – it’s essential for achieving safety, stability and efficacy. However, purification is easier said than done, especially with challenging molecules like DNA and RNA “oligonucleotides,” due in large part to their diversity and the range of impurities that can be generated during production. Enter DAVISIL® chromatographic silica, with a wide range of pore diameters and particle sizes to meet your specific application, performance and sustainability requirements. Before you choose the chromatography resin for your next purification application, take a look at these 5 considerations.
Automating Protein Purification: Efficiency, Yield, and Reproducibility
March 27th 2025Recent advancements in automated protein purification stress the importance of efficiency, scalability, and yield consistency. This eBook compares different purification platforms, highlighting their impact on downstream applications and demonstrating how automation enhances throughput and process control.
MilliporeSigma: Ultrapure Water for Sensitive LC-MS Analysis of Pesticides
March 25th 2025The aim of the study was to illustrate the efficiency of Milli-Q® water purification systems in eliminating pesticides from tap water, thereby producing and delivering reliable and consistent-quality ultrapure water suitable for pesticides analysis