The Application Notebook
Phenomenex Application Note
Due to the increasing number toxic pesticides being used throughout the world, a robust method for positively identifying low levels of multiple classes of pesticides is required. A Zebron ZB-MultiResidue column is used with GC–MS to identify over 100 common pesticides.
There is an increasing amount of trade in agricultural products, resulting in greater need to regulate those exports/imports for toxic chemicals like pesticides. Many countries importing foods are striving for testing protocols that account for the variation of pesticides being used as well as different regulations of other exporting countries. To this end, a widely accepted method of pesticide residue identification and quantification relies on a screening approach using GC–MS.
Multi-residue screening analyses are typically extracted using QuEChERS, which do not fractionate residues into separate classes. The large number of resulting compounds must be separated in one chromatographic run. A GC–MS is used to separate and positively identify compounds as well as give low detection limits.
For this work, a column specifically designed for multiple pesticide detection is used, the ZB-MultiResidue-1. The column was developed using a new stationary phase unlike any commercially available columns today. The column is also MS certified making it ideal for use with GC–MS for multi-residue pesticide methods.
A Zebron ZB-MultiResidue column of 30 m × 0.25 mm i.d. × 0.25 µm dimensions (Phenomenex, Torrance, California, USA) was used in an Agilent 6890 with 5973 MSD (Palo Alto, California, USA). The splitless injection of 1.0 µL of 1 ppm analytes was made with constant flow helium at 0.9 mL/min. The oven programme was 80 °C for 0.5 min to 150 °C at 10 °C/min to 240 °C at 4 °C/min to 320 °C at 15 °C/min for 3 min.
The chromatogram for a multi-pesticide screen is presented in Figure 1. This chromatogram contains 112 of the most commonly detected pesticides; including chlorinated, nitrogen and phosphorous containing pesticides classes.
Figure 1: Multi-residue pesticide screen. For peak identities, please contact Phenomenex.
Typical chromatograms using 5% phenyl phases can have clusters of co-eluting peaks in the center of the chromatogram. The unique selectivity of the ZB-MultiResidue-1 column offers improved separation of previously clustered peaks. Fewer co-elutions are advantageous for sensitive SIM methods because fewer peaks are included in the SIM window. This results in easier identification, greater signal-to-noise and lower detection limits.
The column is also MS certified, providing low bleed in sensitive MS detectors. This lowers noise levels for later eluting compounds like permethrins, making detection and quantification easier.
A pesticide multi-residue screening method is presented using a new gas chromatographic column coupled with mass spectrometry. This method provides for improved analyte separation which can result in easier SIM method development as well as improved quantification. In addition, this MS certified column provides low bleed to reduce instrument maintenance and provide better detection limits for later eluting compounds.
Additional methods are available that include retention of over 300 different pesticides. For further information on Multi-Residue methods, please contact Phenomenex.
Phenomenex Inc.
411 Madrid Ave., Torrance, California, USA
tel: +1 310 212 0555 fax: +1 310 212 7768
Website: www.phenomenex.com
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.