Special Issues
Pain management LC analyses can be difficult to optimize because of the limited selectivity of C18 and phenyl-hexyl phases.
Pain management LC analyses can be difficult to optimize because of the limited selectivity of C18 and phenyl-hexyl phases. In contrast, the selectivity of Raptor™ Biphenyl superficially porous particle (SPP) LC columns provides complete resolution of isobaric pain medications with a total cycle time of 5 min.
Accurate, reliable analysis of pain medications is a key component in monitoring appropriate medical use and preventing drug diversion and abuse. As the demand for fast, multicomponent methods grows, LC–MS–MS methods are increasingly desired for pain management and therapeutic drug monitoring because of the low detection limits that can be achieved with this highly sensitive and selective technique. However, despite the selectivity offered by mass spectrometry, hydrophilic matrix components can still interfere with early-eluting drug compounds resulting in ion suppression. In addition, isobaric pairs must be chromatographically separated for positive identification. The need for highly selective and accurate methods makes LC column selection critical.
While C18 and phenyl-hexyl phases are frequently used for bioanalytical LC–MS–MS applications, Restek's Biphenyl phase offers better aromatic retention and selectivity for pharmaceutical and drug-like compounds, giving it a significant advantage over other phases for the analysis of pain management medications or other drugs of abuse. The Biphenyl phase, originally developed a decade ago by Restek, has recently been combined with Raptor™ SPP ("core–shell") silica particles to allow for faster separations without the need for expensive UHPLC instrumentation. Here, we demonstrate the fast, selective separation of commonly tested pain drugs that can be achieved using the new Raptor™ SPP Biphenyl LC column.
A standard containing multiple pain management drugs was prepared in blank human urine and diluted with mobile phase as follows, urine:mobile phase A:mobile phase B (17:76:7). The final concentration for all analytes was 10 ng/mL except for lorazepam, which was 100 ng/mL. Samples were then analyzed by LC–MS–MS using an AB SCIEX API 4000™ MS–MS in ESI+ mode. Chromatographic conditions, retention times, and mass transitions are presented here and in Tables 1 and 2:
As shown in Figure 1, 18 commonly tested pain management drugs were analyzed, with the last compound eluting in less than 3.5 min, giving a total cycle time of 5 min on Restek's Raptor™ SPP Biphenyl LC column. Analyte retention times are presented in Table 2. Important isobaric pairs (morphine/hydromorphone and codeine/hydrocodone) were completely resolved and eluted as symmetrical peaks, allowing accurate identification and integration. In addition, early-eluting compounds such as morphine, oxymorphone, and hydromorphone are separated from hydrophilic matrix interferences, resulting in decreased ion-suppression and increased sensitivity. Similar analyses on C18 and phenyl-hexyl columns often exhibit poor peak shape and resolution (for example, peak tailing between closely eluting isobars), which makes identification and accurate quantification more difficult.
Figure 1: Baseline resolution of isobaric pain management drugs in sub-5-min runs on the Raptor™ Biphenyl column.
Complete separation of critical pain management drug analytes from hydrophilic matrix components and isobaric interferences was achieved using the new Raptor™ SPP Biphenyl LC column in less than 5 min. The fast, complete separations produced in this method allow accurate quantification of pain management drugs and support increased sample throughput and improved lab productivity.
To learn more, visit www.restek.com/raptor
Restek Corporation
110 Benner Circle, Bellefonte, Pennsylvania 16823, USA
Tel: (800) 356 1688 fax: (814) 353 1309
Website: www.restek.com/raptor
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.