The Application Notebook
This application note describes a combined approach of analytical method development and method transfer by direct emulation of different target HPLC systems.
Edgar Naegele and Andreas Borowiak, Agilent Technologies, Inc.
This application note describes a combined approach of analytical method development and method transfer by direct emulation of different target HPLC systems.
Method development facilities face the challenge to develop LC methods for a diversity of target systems used across different departments, or even within one analytical laboratory, because systems differ in manufacturer or LC generation. To overcome the need for many method development systems, this application note presents a workflow that combines analytical method development supported by Agilent Method Scouting Wizard with on-the-fly target system emulation using Agilent Intelligent System Emulation Technology (ISET). One of the emulated target systems was a Waters Acquity H-Class.
Experimental Conditions
For method development, an Agilent 1290 Infinity II Method Development Solution was used. This solution included a solvent selection valve and a Multicolumn Thermostat (MCT) with an eight-column selection valve. Methods necessary for column and gradient screening as well as for instrument flushing and column equilibration were created automatically using Agilent Method Scouting Wizard. Emulation of the target systems was done using Agilent Intelligent System Emulation Technology. To achieve a separation method suitable for the target LC system, C8, C18, phenyl-hexyl, and pentafluorophenyl (PFP) phases with small particles (2.1 × 100 mm, 1.9 μm) were used. The initial campaign was run with methanol and acetonitrile as organic solvents and at three different temperatures. The initial generic gradient had a length of 20 min and the organic solvent increased from 5% to 70%.
Results
As expected, C8 and C18 columns showed similar separation. Surprisingly, the PFP phase showed a dramatically earlier elution with slightly different selectivity. All compounds were already separated and the last peak eluted at a retention time of 12 min. In a second campaign, different flow rates and gradients were tested to separate the pesticide sample on the PFP column in a shorter run time and with optimum resolution. Finally, the separation could be achieved in only 7.4 min applying a gradient from 10% to 47% acetonitrile at a flow rate of 0.85 mL/min. The identity of the retention times could be seen in the comparison of the chromatograms obtained on the Agilent 1290 Infinity II Method Development System and the Waters H-Class system. Typical standard deviations of retention times below 0.01 min could be found. Corresponding RSD values were typically below 0.2%. The differences in retention time between the development system and the target system were typically below 2%. The complete method development workflow took approximately 37 h.
Conclusions
This application note demonstrates the use of the Agilent 1290 Infinity II Method Development Solution with Agilent Method Scouting Wizard for direct development of analytical separation methods under ISET control for a chosen target system. The results showed excellent correlation between the method developed on the Agilent 1290 Infinity II Method Development Solution and the target system. The retention time deviation was typically below 2%.
Agilent Technologies, Inc.
5301 Stevens Creek Blvd., Santa Clara, California 95051, USA
Tel.: (800) 227 9770
Website:www.agilent.com
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.