PSS Application Note
Polysaccharides are very important in nature, occurring in food (starches in rice, wheat, etc.) and plants (cellulose). Some polysaccharides are also produced commercially, for example dextrans, which are manufactured through the fermentation of sugar solutions. These are higher molar mass polysaccharides.
Dextrans are used in clinical and technical applications, where molecular weight is critical in determining the properties of the final product. Accurate determination of the molecular weight distribution is vital.
On the other hand, low molar mass saccharides are also very common in food, such as fruits, honey and sweets. Examples of low molar mass sugars are mono- (glucose, fructose), di- (lactose, isomaltose, trehalose) and trisaccharides (maltotriose, isomaltotriose). The separation and identification of low molar mass polysaccharides is a challenge as the compounds have the same chemical formula and only small differences in structure, for example disaccharides maltose, isomaltose, gentiobiose cellobiose and trehalose C12H22O11.
Experimental Conditions:
Eluent: NaNO3 0.1 M
Columns: PSS SUPREMA 5 µm 3 × 100 Å (8 × 300 mm) + precolumn
Data acquisition: PSS WinGPC Unity
Detectors: SECcurity GPC1200 RI
Flow-rate: 0.25 mL/min
Concentration: 4 g/L
Injection volume: 5 µL
Sample Figure 1: Dextran T1, Glucose
Sample Figure 2: Disaccharides
A high resolution and therefore a good separation on the column, is necessary for a precise analysis. This is particularly important when new analytical LC coupling methods like GPC/SEC–ESI-MS are used, as the MS detector requires the columns to have a much higher resolution power within an overall smaller column volume.
Figure 1: Overlay of elugrams of a glucose (red curve) with a low molar mass Dextran T1 (black curve).
The new SUPREMA column, with a reduced particle size of 5 µm, offers a significant improvement in performance compared to 10 µm materials and provides outstanding additional resolution, especially in the low molecular weight area, which is a major consideration when analysing oligomeric polysaccharides.
The analysis of dextran T1 shows the separation power when a combination of three SUPREMA 5 µm 100 Å columns is used. The oligomers in the low molecular weight are able to be resolved up to P10. A glucose separation is overlaid, as a reference.
The analysis of different disaccharides shows the ability to separate compounds with the same chemical formula and with only small differences in structure and hence size in solution.
Figure 2: Overlay of elugrams of isomaltose (black), maltose (red), gentiobiose (green), cellobiose (dark green) and trehalose (blue).
PSS SUPREMA 5 µm columns can be used for numerous neutral and anionic aqueous applications in the molecular weight area between 100 Da to around 5 million Da. The columns are available in analytical (i.d. 8 mm) and micro (i.d. 4.6mm) dimensions with different porosities. Linear or mixed columns are also available.
PSS Polymer Standards Service GmbH
In der Dalheimer Wiese 5, D-55120 Mainz, Germany
tel: +49 6131 962390 fax: +49 6131 962390 11
E-mail: info@polymer.de Website: www.polymer.de
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.