Researchers from the University of Almeria have developed a method for the classification of rum using HS-SPME-GC–MS.
Photo Credit: BRBN~LVR / stock.adobe.com
Researchers from the University of Almeria have developed a method for the classification of rum using headspace solid-phase microextraction coupled to gas chromatography–mass spectrometry (HS-SPME-GC–MS) (1).
With an unsavory past, and an unsavory regulatory landscape, rum, unlike its spiritual sibling whiskey, has a classification system as wild as the sea farers it is so often associated with. Despite this regulatory confusion, the sugar cane spirit continues to grow in popularity. This invention and innovation has seen world consumption rates for rum reach more than 1 billion litres per year with an expected increase of 1.9% in volume terms moving into 2021 (2,3).
The complex creation process of rum is part of its appeal, requiring the addition of different spices and ageing times, along with delicate blending processes to procure its characteristic charm, but it is also the source of its classification woes. Rums can be classified according to the raw material used, the fermentation process, distillation process, ageing periods, type of barrel used, blending technique, alcohol strength, and additives (if any!). Because of this lack of clear universal legislation, loose terms relating to ageing periods, such as “Añejo”, “Dorado”, “Premium”, “Super Premium”, or “Reserve” are used. Unfortunately, there is often little justification for their usage because the blending of rums from different ages is common and the age required to be displayed can vary. EU and US legislation insist the label refers to the youngest rum in the blend (4,5), whereas other countries, such as Canada, can refer to the oldest in the blend, even if the oldest rum used constitutes very little of the final volume. Therefore, the development of methods that allow reliable characterization of rums is essential.
Researchers used a simple and automated HS-SPME-GC–MS method with a range of data analysis techniques to classify the rums based upon the most discriminant compounds of the volatile fraction. Targeted analysis found some chemical indicators, such as ethyl acetate or ethyl esters of carboxylic acid, that could be correlated with ageing within the same brand, but clear limitations when they were used across different brands. Untargeted analysis using chemometrics proved to be more effective, with hierarchical cluster analysis (HCA) clearly distinguishing rums with additives to those made in the traditional manner. Further classification of traditionally distilled rums was performed using principal component analysis (PCA), which provided 40 ions as relevant chemical descriptors corresponding to 13 discriminant compounds. These were further confirmed using a strategy based on the combination of retention indexes, NIST database matching using lowâresolution mass spectrometry (LRMS), and HRF scores using high-resolution spectra obtained by high-resolution mass spectrometry (HRMS) quadrupole orbital trap.
References
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.