Researchers from the University of Almeria have developed a method for the classification of rum using HS-SPME-GC–MS.
Photo Credit: BRBN~LVR / stock.adobe.com
Researchers from the University of Almeria have developed a method for the classification of rum using headspace solid-phase microextraction coupled to gas chromatography–mass spectrometry (HS-SPME-GC–MS) (1).
With an unsavory past, and an unsavory regulatory landscape, rum, unlike its spiritual sibling whiskey, has a classification system as wild as the sea farers it is so often associated with. Despite this regulatory confusion, the sugar cane spirit continues to grow in popularity. This invention and innovation has seen world consumption rates for rum reach more than 1 billion litres per year with an expected increase of 1.9% in volume terms moving into 2021 (2,3).
The complex creation process of rum is part of its appeal, requiring the addition of different spices and ageing times, along with delicate blending processes to procure its characteristic charm, but it is also the source of its classification woes. Rums can be classified according to the raw material used, the fermentation process, distillation process, ageing periods, type of barrel used, blending technique, alcohol strength, and additives (if any!). Because of this lack of clear universal legislation, loose terms relating to ageing periods, such as “Añejo”, “Dorado”, “Premium”, “Super Premium”, or “Reserve” are used. Unfortunately, there is often little justification for their usage because the blending of rums from different ages is common and the age required to be displayed can vary. EU and US legislation insist the label refers to the youngest rum in the blend (4,5), whereas other countries, such as Canada, can refer to the oldest in the blend, even if the oldest rum used constitutes very little of the final volume. Therefore, the development of methods that allow reliable characterization of rums is essential.
Researchers used a simple and automated HS-SPME-GC–MS method with a range of data analysis techniques to classify the rums based upon the most discriminant compounds of the volatile fraction. Targeted analysis found some chemical indicators, such as ethyl acetate or ethyl esters of carboxylic acid, that could be correlated with ageing within the same brand, but clear limitations when they were used across different brands. Untargeted analysis using chemometrics proved to be more effective, with hierarchical cluster analysis (HCA) clearly distinguishing rums with additives to those made in the traditional manner. Further classification of traditionally distilled rums was performed using principal component analysis (PCA), which provided 40 ions as relevant chemical descriptors corresponding to 13 discriminant compounds. These were further confirmed using a strategy based on the combination of retention indexes, NIST database matching using lowâresolution mass spectrometry (LRMS), and HRF scores using high-resolution spectra obtained by high-resolution mass spectrometry (HRMS) quadrupole orbital trap.
References
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.