The National Institute of Standards and Technology (NIST).
National Institute of Standards and Technology Makes Polycyclic Aromatic Hydrocarbon Structure Index Publicly Available
The National Institute of Standards and Technology (NIST), an agency of the U.S. Department of Commerce, has made a polycyclic aromatic hydrocarbon (PAH) structure index database publicly available on-line (http://pah.nist.gov/). A by-product of hydrocarbon fuel combustion, PAHs can have significant adverse health and environmental impacts. The website contains data on more than 650 PAH compounds, with more to be added in the future.
According to NIST, the Chemical Informatics Research Group of NIST's Material Measurement Laboratory created the site to provide standard reference data to industry, academia, and the US public, and builds on NIST Special Publication 922: Polycyclic Aromatic Hydrocarbon Structure Index (SP922) by Lane C. Sander and Stephen A. Wise of NIST. Publication SP922 indexed a large number of PAH structures and provided parameters for estimating retention indices for liquid chromatography using a simple model. The new database expands on this by providing data from further experimental data including a collection of thermochemical data on gas-phase PAH compounds, and UV–visible spectra.
Duke Molecular Physiology Institute Receives Agilent Grant
Agilent Technologies (Santa Clara, California) has awarded a grant to the Duke Molecular Physiology Institute, Duke University (Durham, North Carolina) to support research into the metabolic and physiological aspects of major chronic diseases such as cardiovascular disease. The institute researchers perform a range of analytical chemistry techniques, including liquid chromatography and gas chromatography coupled to mass spectrometry, to characterize molecular pathways in disease.
The group is headed by Christopher Newgard, a professor at Duke University School of Medicine's Department of Pharmacology and Cancer Biology and director of the Sarah W. Stedman Nutrition and Metabolism Center and the Institute for Molecular Physiology.
"The Duke Molecular Physiology Institute seeks to combine strong genomics, epigenomics, transcriptomics, and metabolomics platforms with computational biology, clinical translation, and basic science expertise to gain new insights into the mechanisms of cardiometabolic disease," Newgard said, adding "We thank Agilent for supporting our research and look forward to collaborating to advance the understanding of cardiovascular and undiagnosed metabolic diseases."
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.