The National Institute of Standards and Technology (NIST).
National Institute of Standards and Technology Makes Polycyclic Aromatic Hydrocarbon Structure Index Publicly Available
The National Institute of Standards and Technology (NIST), an agency of the U.S. Department of Commerce, has made a polycyclic aromatic hydrocarbon (PAH) structure index database publicly available on-line (http://pah.nist.gov/). A by-product of hydrocarbon fuel combustion, PAHs can have significant adverse health and environmental impacts. The website contains data on more than 650 PAH compounds, with more to be added in the future.
According to NIST, the Chemical Informatics Research Group of NIST's Material Measurement Laboratory created the site to provide standard reference data to industry, academia, and the US public, and builds on NIST Special Publication 922: Polycyclic Aromatic Hydrocarbon Structure Index (SP922) by Lane C. Sander and Stephen A. Wise of NIST. Publication SP922 indexed a large number of PAH structures and provided parameters for estimating retention indices for liquid chromatography using a simple model. The new database expands on this by providing data from further experimental data including a collection of thermochemical data on gas-phase PAH compounds, and UV–visible spectra.
Duke Molecular Physiology Institute Receives Agilent Grant
Agilent Technologies (Santa Clara, California) has awarded a grant to the Duke Molecular Physiology Institute, Duke University (Durham, North Carolina) to support research into the metabolic and physiological aspects of major chronic diseases such as cardiovascular disease. The institute researchers perform a range of analytical chemistry techniques, including liquid chromatography and gas chromatography coupled to mass spectrometry, to characterize molecular pathways in disease.
The group is headed by Christopher Newgard, a professor at Duke University School of Medicine's Department of Pharmacology and Cancer Biology and director of the Sarah W. Stedman Nutrition and Metabolism Center and the Institute for Molecular Physiology.
"The Duke Molecular Physiology Institute seeks to combine strong genomics, epigenomics, transcriptomics, and metabolomics platforms with computational biology, clinical translation, and basic science expertise to gain new insights into the mechanisms of cardiometabolic disease," Newgard said, adding "We thank Agilent for supporting our research and look forward to collaborating to advance the understanding of cardiovascular and undiagnosed metabolic diseases."
Pittcon 2025: Xiao Su Discusses His Work in Electrochemical Separations
March 13th 2025In this video interview with Xiao Su, he dives deeper into the research that he and his team are conducting with redox-active polymers and the applicability of electrochemical approaches in separation science.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Pittcon 2025: Kate Perrault Uptmor Talks About Multidimensional GC and Mentorship
March 13th 2025In our interview with Kate Perrault Uptmor, we asked her about the resources available for those interested in learning more about multidimensional chromatography, and current trends happening in separation science that are of particular note.
Analyzing Effects of Adverse Cardiovascular Events on Chronic Kidney Disease with HPLC
March 13th 2025Researchers investigated the potential association between plasma apolipoprotein M (APOM) levels and the risk of adverse cardiovascular outcomes in individuals with chronic kidney disease (CKD). Plasma sphingosine-1-phosphate (S1P) levels were measured by high performance liquid chromatography (HPLC).