Researchers from the University of Rome have developed a strategy for the identification of underivatized short peptides in urine using graphitized carbon black (GCB) solid-phase extraction (SPE) and liquid chromatography–mass spectrometry (LC–MS).
Photo Credit: anusak / stock.adobe.com
Researchers from the University of Rome have developed a strategy for the identification of underivatized short peptides in urine using graphitized carbon black (GCB) solid-phase extraction (SPE) and liquid chromatography–mass spectrometry (LC–MS) (1).
From biomarkers to bioactives, short peptide sequences have emerged as analytes of interest across a variety of different research fields with possibilities in the food traceability field coinciding with potential as disease biomarkers. Healthâpromoting bioactivities, such as antioxidant, antihypertensive, and antimicrobial properties (2–5), also continue to show promise.
Despite this potential, short peptides are under-investigated because of the challenges surrounding direct analysis, including the low abundance of peptides compared to other molecules, which can cause extensive ion suppression during electrospray ionization (ESI) (6). Extensive clean-up protocols can circumnavigate some of these issues, however, the nature of short peptides complicates sample cleanup dramatically. Further issues exist when attempting to use high-resolution mass spectrometry (HRMS) or tandem mass spectrometry (MS/MS) for identification as most software developed for proteomics cannot identify sequences shorter than five amino acids (7), with metabolomic databases currently being insufficient.
To address this lack of investigation, researchers developed a strategy for the identification of short peptides in urine, a commonly studied biofluid. Separation was achieved through ultrahigh-performance liquid chromatography (UHPLC), both reversed-phase and hydrophilic interaction chromatography (HILIC) with HRMS. An enrichment strategy utilizing GCB SPE was used to isolate and clean up the short peptides from the complex urine matrix.
Overall 101 peptides were identified from the reversed-phase runs and 111 peptides from the HILIC investigations, with 60 common identifications. According to the researchers, these positive results indicate that the method could be used to address the shortfall in short peptide research, but further work is still required to increase the method’s ease and move towards automation. Additionally, it is believed the GCB enrichment procedure could be utilized for alternative biofluids such as plasma.
References
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.