Researchers from the University of Rome have developed a strategy for the identification of underivatized short peptides in urine using graphitized carbon black (GCB) solid-phase extraction (SPE) and liquid chromatography–mass spectrometry (LC–MS).
Photo Credit: anusak / stock.adobe.com
Researchers from the University of Rome have developed a strategy for the identification of underivatized short peptides in urine using graphitized carbon black (GCB) solid-phase extraction (SPE) and liquid chromatography–mass spectrometry (LC–MS) (1).
From biomarkers to bioactives, short peptide sequences have emerged as analytes of interest across a variety of different research fields with possibilities in the food traceability field coinciding with potential as disease biomarkers. Healthâpromoting bioactivities, such as antioxidant, antihypertensive, and antimicrobial properties (2–5), also continue to show promise.
Despite this potential, short peptides are under-investigated because of the challenges surrounding direct analysis, including the low abundance of peptides compared to other molecules, which can cause extensive ion suppression during electrospray ionization (ESI) (6). Extensive clean-up protocols can circumnavigate some of these issues, however, the nature of short peptides complicates sample cleanup dramatically. Further issues exist when attempting to use high-resolution mass spectrometry (HRMS) or tandem mass spectrometry (MS/MS) for identification as most software developed for proteomics cannot identify sequences shorter than five amino acids (7), with metabolomic databases currently being insufficient.
To address this lack of investigation, researchers developed a strategy for the identification of short peptides in urine, a commonly studied biofluid. Separation was achieved through ultrahigh-performance liquid chromatography (UHPLC), both reversed-phase and hydrophilic interaction chromatography (HILIC) with HRMS. An enrichment strategy utilizing GCB SPE was used to isolate and clean up the short peptides from the complex urine matrix.
Overall 101 peptides were identified from the reversed-phase runs and 111 peptides from the HILIC investigations, with 60 common identifications. According to the researchers, these positive results indicate that the method could be used to address the shortfall in short peptide research, but further work is still required to increase the method’s ease and move towards automation. Additionally, it is believed the GCB enrichment procedure could be utilized for alternative biofluids such as plasma.
References
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.