Davy Guillarme previews his presentation at HPLC 2019 highlighting the new trends in LC×LC applied for biopharmaceutical characterization, including the hyphenation with high‑resolution mass spectrometry (HRMS) and ion mobility spectrometry (IMS).
At the previous HPLC 2018 symposium, there was a strong focus on the analytical characterization of protein biopharmaceuticals, including monoclonal antibodies (mAbs) and antibody–drug conjugates (ADCs). In particular, there was an opening plenary lecture from Stacey Ma (Genentech, San Francisco, California, USA) about the most recent analytical technologies used in the biopharmaceutical industry. Additionally, there were also several dedicated lectures and posters sessions on the analysis of mAbs, ADCs, and other formats of proteinâbased drugs.
Since the development of recombinant insulin in 1982, the number of proteinâbased drugs has dramatically increased, and protein biopharmaceuticals have emerged as important therapeutic options for the treatment of cancer, inflammatory and autoimmune disorders, Alzheimer’s disease, and even migraines. Based on this broad range of applications, numerous pharmaceutical companies are increasing their efforts aimed at the research and product development of biologics. Given their obvious benefits in terms of safety and efficacy, mAbs are today the most successful biopharmaceutical products and have totally reshaped the pharmaceutical market (1). As well as mAbs, there is also strong interest in mAb-related products, such as new ADC formats, fusion proteins, PEGylated proteins, bispecific antibodies (BsAbs), antibody fragments (nanobodies and Fab), and polyclonal antibodies (pAb). Last, but not least, some of the first-generation mAbs and fusion proteins will come off patent soon, and there is consequently a significant increase of biosimilars activity requiring powerful analytical methods for comparability assessment of originators and biosimilars.
It is indeed important to keep in mind that these products are highly complex in terms of structure, and the characterization of therapeutic mAbs and ADCs is a tremendous challenge to stateâofâthe-art analytical technologies. Indeed, subtle changes in these large (greater than 150 kDa) molecules can have profound effects on efficacy, pharmacokinetic properties, and toxicity. It is therefore important to have the ability to rapidly and accurately assess changes in the distribution of different isoforms, for example, glycosylation, oxidation, deamidation, lysine truncation of these biomolecules (2).
Today, the most widely used analytical approaches for therapeutic protein characterization are liquid chromatography (LC) and mass spectrometry (MS), probably as a result of the remarkable developments of these strategies in the past few years, which have enabled a new level of performance. Lectures and posters at HPLC 2019 will demonstrate the usefulness of modern LC and MS approaches to demonstrate the product quality and increase the safety of biopharmaceutical products.
As well as the conventional LC modes, such as size-exclusion chromatography (SEC), ion exchange chromatography (IEC), hydrophobic interaction chromatography (HIC), reversedâphase LC, and hydrophilic interaction liquid chromatography (HILIC), it is also possible to combine the most promising chromatographic strategies in a comprehensive two-dimensional liquid chromatography (LC×LC) setup. This allows for a more detailed characterization of some highly complex and heterogeneous new biological entities, thanks to a significantly better peak capacity. In addition, LC×LC also offers the opportunity to combine nondenaturing chromatographic modes requiring significant amount of nonvolatile salts (IEC and SEC) to MS, using a desalting step in the second dimension. Even though LC×LC is becoming more and more popular for the analysis of small molecules, it has only very recently been used for biopharmaceutical characterization (3,4).
During my presentation at the next HPLC 2019 symposium, I will try to highlight the new trends in LC×LC applied for biopharmaceutical characterization, including the hyphenation with highâresolution mass spectrometry (HRMS) and ion mobility spectrometry (IMS).
References
Davy Guillarme holds a Ph.D. degree in analytical chemistry from the University of Lyon, France. He is now senior lecturer at the University of Geneva in Switzerland. He has authored more than 200 journal articles related to pharmaceutical analysis. His expertise includes HPLC, UHPLC, HILIC, LC−MS, SFC, and the analysis of proteins and mAbs. He is an associate editor of Journal of Chromatography B and editorial advisory board member of several journals.
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.