Special Issues
An introduction from the guest editor of this special supplement from LCGC Europe revealing recent developments in high performance liquid chromatography (HPLC) and ultrahigh-pressure liquid chromatography (UHPLC).
An introduction from the guest editor of this special supplement from LCGC Europe revealing recent developments in high performance liquid chromatography (HPLC) and ultrahigh-pressure liquid chromatography (UHPLC).
I am delighted to present to you key developments in the field of ultrahighâpressure liquid chromatography (UHPLC) and high performance liquid chromatography (HPLC) by four leading researchers. With their contributions, they give an overview of the concepts and visions that will, at least in my opinion, dominate the future research in column technology in HPLC and UHPLC.
One vision that gets progressively more and more supported by the literature is the fact that the current column hardware is no longer adequate to maintain the very high efficiencies and small peak volumes produced by the high-quality particles (ever smaller, with an ever narrower particle size distribution) and highâquality packings (obtained by ever more optimized packing procedures) that have now become state-of-the-art. The inadequacy of the current column hardware is the main theme in the contribution by Fabrice Gritti, revealing how the current bulky column design and the way our columns are installed in our instruments are unsuited to remove the viscous friction heat one can expect when using state-of-the-art columns at their top speed. Having removed a major fraction of the excess thermal mass plaguing the current column format, and having developed an ingenious permanent vacuum enclosure solution to let the column operate in a nearâperfect adiabatic mode, 95% of the maximum expected efficiency could be achieved.
Nobuo Tanaka, still pushing to break chromatographic records and achieve record efficiencies, shows in his contribution that column technology should not be restricted to the conventional single-column paradigm, but that multicolumn systems (one of my favourite topics) can be conceived to increase the versatility, speed, and efficiency of the analysis. More specifically, Tanaka et al. used recycled chromatography to produce ultrahighâefficiencies, capable of separating aromatic hydrocarbons based on the difference of one H/D substitution down to a relative retention ratio of α = 1.008.
Next to hardware-another of my pet topics to emphasize how our instruments (and columns) could be empowered by adding much more intelligence than is the case today. While software and artificial intelligence are literally revolutionizing our world as we speak, little or no effort is being made to incorporate these concepts in the area of chromatography. However,
as advocated by Dan Armstrong and his team, chromatography is an area that can highly benefit from a variety of digital signal processing techniques. Signal processing is fully accepted in other areas, such as spectroscopy, but has barely been explored to its full potential in chromatography, certainly not at a commercial level. The authors illustrate this by providing a comprehensive overview of recent data analysis algorithms that can be used to enhance the signal-toânoise ratio (S/N) and even separation resolution. The techniques they describe are easy to program and the authors see no reason why they would not be incorporated in future instrument software versions.
It is also written in the stars that more and more attention will be paid to tighter connection between LC and mass spectrometry (MS) instruments, both in terms of an advanced hardware integration as well as a better chemical integration. While the former is one of the prominent aspects of the contribution of Gritti (see the part on the integrated column/electrospray ionization [ESI] probe), the contribution of Szabolcs Fekete, Davy Guillarme, and co-workers addresses the second issue. Considering the very timely application of the ion-exchange separation and MS detection of monoclonal antibodies (mAbs) and related products, they show how an in-depth and systematic study of recently proposed MS-friendly buffers, such as ammonium acetate and ammonium carbonate or bicarbonate, can be used to understand and optimize the impact of ionic strength, buffer capacity, and pH-response on the retention behaviour and peak shape of mAb species.
In conclusion, I am convincedthe high-level contributions in this LCGC supplement show column technology has not fully matured yet as some believe. On the contrary, there is still a large progression margin and many challenges ahead. For example, there is a growing field of (potential) applications in the life sciences where LC is still too slow and does not offer enough separation capacity. Improvements in column technology will be the key to overcome these limitations. Hopefully one day, these improvements will lead to an era where LC finally offers the same efficiency as gas chromatography (GC), a wish and a vision once formulated by Pat Sandra.
Exploring Severity of Traumatic Brain Injury with DI/LC-MS/MS
January 27th 2025Researchers employed direct infusion/liquid chromatography-tandem mass spectrometry in their exploration of the potential of metabolomics to examine probable primary and secondary brain injury in severe traumatic brain injury.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Measuring Procyanidin Concentration in Wines Using UHPLC
January 24th 2025Researchers from the University of Bordeaux (Villenave d'Ornon, France) report the development and validation of a rapid and quantitative analytical method measuring crown procyanidin concentration in red and white wines using ultra-high performance liquid chromatography (UHPLC) coupled with a ultra-high performance liquid chromatography (Q-TOF) mass spectrometer.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.