The analysis of lipids in biological systems, also known as lipidomics, is an incredibly diverse area of research, with wide-reaching consequences, from the understanding of cell signalling to unravelling the complexities of diseases, such as cancer or neurodegenerative disorders. Chromatography plays a key role in lipidomic analysis, with three main approaches emerging in the form of separation coupled to mass spectrometry (MS), direct infusion of the sample to MS (shotgun), and desorption ionization techniques coupled to MS. The separation prior to MS is generally performed using either gas chromatography (GC) or liquid chromatography (LC), but both techniques have their limitations and strengths. In the case of GC, the necessity of derivatization, and in LC the characteristic polarity ranges depending on the separation mode. However, researchers from the University of Pardubice, in Pardubice, Czech Republic, believe a third technique, which combines the advantages of GC and LC, is worth consideration and have recently published a paper making the case (1).
Known since the 1980s, supercritical fluid chromatography (SFC) uses a supercritical fluid as the mobile phase. The physicochemical properties of the supercritical fluids lead to low back pressures, allowing the use of high flow rates and good solubility properties when used as the mobile phase. However, SFC has struggled over the years to gain acceptance because of instrumental issues in the early stages of its development. However, modern ultrahigh-performance supercritical fluid chromatography (UHPSFC) systems now offer stable and reproducible results and the researchers believe the technique can be utilized effectively across the ‘omics' fields.
“The reproducibility was a problem in the past for SFC, and for me, this is the main aspect why now SFC can reach the level where the full potential of this methodology can be explored and used by researchers worldwide,” said Michal Holčapeck. “The advantages of UHPSFC–MS over ultrahigh‑pressure liquid chromatography (UHPLC)–MS are based on the physicochemical properties of the supercritical fluid or eventual subcritical fluid, which is often the case in real operating conditions. The polarity of supercritical carbon dioxide as the most prevailing SFC solvent is comparable to that of hexane and, therefore, the method is perfectly suited for all nonpolar molecules. This results in an outstanding sensitivity for nonpolar molecules. The speed of analysis is a highly appreciated feature, especially for high-throughput analysis. The van Deemter curves for UHPSFC and UHPLC clearly explain why we can increase the flow rate without loss of performance and with reduced risk of system overpressure. Moreover, there is still space for improvement when the pressure limit of current systems is increased. In some cases, UHPSFC offers different selectivities, which may be an example of ultrafast chiral separations of some pharmaceutical compounds.”
For those considering using UHPSFC–MS, the researchers believe the methodological switch from UHPLC–MS is not too difficult, as both techniques are very similar, plus the potential benefits, especially for nonpolar lipid classes as well as polar phospholipids and sphingolipids, are well worth consideration.
“I think that the methodology itself is ready to be immediately adopted by the wider research community,” continued Holčapeck.
The robustness and high-throughput of UHPSFC–MS potentially makes it ideal for routine clinical laboratories with thousands of samples; despite its past difficulties, SFC could be worth a second consideration.
Reference
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.