The Ebola virus (EBOV), the causative agent of Ebola virus disease (EVD), is a severe and often fatal illness. Zoonotic in origin, the disease is transmitted from wild animals to humans, with numerous species acting as a disease reservoir. Certain bat species are thought to be the primary source, and they subsequently pass the disease to other species, such as humans, apes, monkeys, and antelopes. Importantly, the disease is also capable of human-to-human transmission. Frequent outbreaks occur in sub-Saharan Africa, but the disease has threatened to spread to other continents, with a few notable cases occurring in the USA in 2014 causing widespread panic. One of the major challenges of controlled Ebola is the speed at which symptoms can manifest. The resulting hemorrhagic fever features an unpleasant medley of symptoms including vomiting, diarrhea, rash, symptoms of impaired kidney and liver function, and in some cases internal and external bleeding, such as oozing from the gums or bloody excrement (1). All of which results in a case fatality rate of around 50%, although these have varied from 25% to 90% in past outbreaks.
Vaccines do exist for the disease, but unfortunately there are limited therapeutic options once the disease is caught, with an urgent need to develop novel anti-EBOV agents. Over 50% of approved drugs are natural products or their derivatives and mimics, highlighting the importance of plants as a source for drug discovery (2).
As such, researchers actively searched for inhibitors of the Ebola virus from over 500 medicinal plant extracts, utilizing size‑exclusion chromatography (SEC) and high performance liquid chromatography (HPLC) alongside cell-based assays with replication-incompetent pseudotyped viral particles to identify antiviral lead compounds (3), in a so-called “one‑stone‑two‑birds” protocol first reported in 2011 (4). This led to the discovery of Maesa perlarius as an anti-EBOV plant lead. Extracts from the stems of this plant showed an inhibitory effect against Ebola-virus-pseudotyped particles (EBOVpp). Further investigation identified these as flavan-3-ol oligomers, and in particular B-type procyanidins belonging to a class of condensed tannins. Researchers believe these molecules can be used as scaffolds for a target-oriented synthesis of additional analogues possessing improved anti-EBOV potency.
References
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.