An excerpt from LCGC's e-learning tutorial on ion-trap and time-of-flight analaysers at CHROMacademy.com
An excerpt from LCGC's e-learning tutorial on ion-trap and time-of-flight mass analysers at CHROMacademy.com
Also known as three-dimensional (3D) ion traps, quadrupole ion traps (QIT) use oscillating electric fields (radio frequency [RF]) to trap ions in a controlled manner. A typical quadrupole ion-trap mass spectrometer consists of a ring electrode with a hyperbolic inner surface and two electrically common hyperbolic end-cap electrodes.
The ion trap is operated by applying a sinusoidal potential (fixed RF frequency) to the ring electrode while the end-cap electrodes may be grounded, biased to a constant direct current (DC) value (usually = 0), or maintained at an oscillating alternating current (AC) potential depending upon the mode of operation. Combinations of RF and AC potentials applied to the ring and end-cap electrodes are used to:
Perhaps the most significant use of ion-trap analysers involves sequential trapping and fragmentation of specific ions to produce highly specific multistage mass spectrometry (MSn) spectral data. This is achieved using collision-induced dissociation of selected precursor ions held within the trap at increased background gas pressures. The product ions are then resonance ejected and monitored. One or many of the product ions may be retained within the trap volume for further fragmentation, making these devices very useful for qualitative analysis. While MS7 or higher is possible, MS3 or MS4 is typically the upper working limit and many modern instruments have the ability to automatically select "significant" precursor ions for further fragmentation — sometimes known as "data dependent" acquisition.
The resolution of 3D traps diminishes rapidly as the ion density increases, and there is capacity for only a limited number of ions at any one time before repulsive charges (known as the space charge effect) cause excess ions to be ejected. To avoid the effects of space charge, the number of ions within the trap are regulated to an optimum (sometimes referred to as the "1/10th level") to achieve optimum mass-to-charge analysis. Careful trap filling control also leads to improved linearity of the trap device.
Linear quadrupole ion traps (LIT), also known as two–dimensional quadrupole ion traps, have been developed from the conventional quadrupole mass analyser and can also be used to collect and inject pulses of ions coming from continuous sources.
A linear ion trap includes two pairs of rods that collect and trap ions using radio frequencies. Simple plate lenses at the ends of the quadrupole provide the DC trapping field to keep the ions confined within the mass analyser. The ion beam is reflected repeatedly between the two electrodes and a slot, made in one of the rods, allowing ions to be radially ejected.
Linear quadrupole ion traps have some reported advantages over traditional (3D) ion traps including higher ion storage volume (reduced space charge effects) and enhanced sensitivity for externally injected ions.
Orbital trap mass analysing devices are a special type of ion trap in which trapped ions cycle around a central electrode as well as oscillate in the horizontal axis. Under the influence of applied voltages, ions will oscillate in a predictable fashion, and these oscillations, known as the image current, can be subjected to a Fourier transformation to produce a mass spectrum. Orbital traps are known for their high resolution and mass accuracy, while being relatively low cost compared to their Fourier transform ion cyclotron resonance (FT-ICR) counterparts.
In time-of-flight (TOF) mass analysing, ions are extracted in short bursts (packets) within the ion source and are subjected to an accelerating voltage that causes the ions to "fly" down an evacuated tube of a set length. The flight times are correlated against at least two known masses from an infused tune compound, which allows a simple mass correlation.
The direct coupling of atmospheric pressure ionization (API) sources with TOF analysers can be problematic, because API techniques yield a continuous ion beam, whereas TOF analysers operate on a pulsed process. This issue is overcome by placing a pusher electrode at 90° to the incident ion beam that pulses to deflect a packet of ions into the mass analysing device.
In practice, LIT and TOF devices are often used in "tandem" MS devices that use the combined capabilities of the individual analysers — so-called Q-trap and Q-TOF instruments.
Table 1 shows the performance of the various mass analysing devices that have been discussed in this instalment, as well as last month's. High resolution and mass accuracy are becoming increasingly important in a wide variety of application areas such as proteomics and metabolomics to remove ambiguity in structural characterization or identification of analytes within complex samples.
Table 1: Performance of various mass analysers.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.