Researchers from Gdansk University of Technology, Poland, have investigated the flavour profiles of e-cigarette refill solutions using GC–MS/MS.
Photo Credit: REDPIXEL.PL/Shutterstock.com
Researchers from Gdansk University of Technology, Poland, have investigated the flavour profiles of e-cigarette refill solutions using gas chromatography–tandem mass spectrometry (GC–MS/MS) (1).
The massive rise of e-cigarettes has partly been fuelled by the wide variety of flavours available to smoke. One publication found that 81.5% of young interviewees use e-cigarettes “because they come in flavours I like” (2). Despite EU tobacco regulations stipulating that flavoured cigarettes are prohibited, this does not apply to e-cigarettes with over 7700 unique flavoured e-liquids being sold as of 2014 (3). The sheer quantity of additives across the liquids has led to concerns regarding their safety, with numerous studies finding adverse effects to e-cigarette use (4,5). Therefore, researchers wanted to carry out a wide-ranging chemical analysis to ascertain the unknown nature and impact of these additives on human cells, particularly the lungs (6,7). They also wanted to document and produce data on the compounds that are responsible for specific e-liquid flavours. The first step in this process was the development of a sensitive method capable of analyzing e-cigarette refills.
Using GC–MS/MS researchers evaluated the compounds responsible for five of the most popular flavours (menthol, apple, tobacco, strawberry, and cherry) from five different brands.
The developed methodology successfully quantitated 90 flavour additives and categorized the flavour chemicals for the evaluation of the taste profiles. “I believe the methods would be suitable to analyze more flavours,” said Pawel Kubica, Gdansk University of Technology. “Everything depends on the physiochemical properties of compounds and how they interact with the stationary phase and with the detector,” he continued.
Future studies are likely to follow on the subject because of the enormous variety of e-cigarette flavours, providing a wealth of interesting compounds for study. “We have finished a project to generate and collect aerosol from e-cigarettes,” said Kubica. “The main purposes of this project were to design and construct a smoking machine for e-cigarettes to obtain high recoveries of aerosol (<90%), reduce the time required for aerosol generation and collection to below 5 min, to choose the proper solid sorbent to “trap” aerosol efficiently, and to desorb with simple solvents,” said Kubica. Previous studies in the area have reported little information on an aerosol generation process, which the researchers from Gdansk University of Technology hope to remedy. “I hope it will be published soon”, added Kubica.
Further to this study, researchers have also developed a method to determine flavours together with nicotine in collected aerosol samples using GC–MS/MS.
For more information, please visit https://chem.pg.edu.pl/kcha/main-page
References
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.