Global warming is a contentious issue, with different groups voicing opposing opinions on if, how and at what rate the warming is occurring. The general consensus is that with increased industrialization, greenhouse gas emissions have also increased, resulting in the formation of a so-called 'greenhouse effect'. The origin of greenhouse gases is therefore of great interest to the scientific community.
Global warming is a contentious issue, with different groups voicing opposing opinions on if, how and at what rate the warming is occurring. The general consensus is that with increased industrialization, greenhouse gas emissions have also increased, resulting in the formation of a so-called ‘greenhouse effect’. The origin of greenhouse gases is therefore of great interest to the scientific community.
Large sections of the worlds oxygenated ocean waters are supersaturated with methane, even though the only ‘significant’ biological source of methane are a group of marine microbes that inhabit deoxygenated waters. This unidentified source of methane constitutes up to 4% of the global methane budget1.
A group of scientists in the USA1 has published data suggesting a new source of ocean methane from an unsuspecting source, the marine archaeon Nitrosopumilus maritimus. It has been previously suggested in response to phosphate starvation that ocean microbes breakdown methylphosphonic acid resulting in the release of methane as a by-product. Until now, the source of methylphosphonic acid has remained undetected and its biosynthesis considered a physical impossibility when considering known and defined biochemical pathways within marine ecosystems.
Using a combination of nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography–mass spectrometry (LC–MS) the group demonstrated that the marine archaeon Nitrosopumilus maritimus encodes a metabolomic pathway for methylphosphonate biosynthesis and it produces methylphosphonate esters that are contained within the cell of the microbe. This approach identified a source of methylphosphonic acid precursor. Furthermore, metagenomic data indicated that methylphosphonate biosynthesis is relatively common in marine microbes, providing a plausible explanation for the methane paradox.
1. William W. Metcalf et al, Science, 1104–1107, DOI:10.1126/science.1219875, (2012)
This story originally appeared in The Column. Click here to view that issue.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.