Researchers from ESPCI Paris and the Institut de Recherche Criminelle de la Gendarmerie Nationale have developed and optimized a comprehensive two-dimensional GC–MS method for the forensic profiling of human hand odour.
Photo Credit: lantapix/Shutterstock.com
Researchers from ESPCI Paris and the Institut de Recherche Criminelle de la Gendarmerie Nationale have developed and optimized a comprehensive two-dimensional gas chromatography–mass spectrometry (GC–MS) method for the forensic profiling of human hand odour (1).
Like fingerprints, human odour is said to be specific to each individual, consisting of hundreds of molecules, and has long played a role in crime investigation through the highly trained and unscrupulous nose of police dogs. However, during court proceedings more conclusive evidence is required and thus the development of an objective analytical strategy to characterize human odour is needed to complement existing canine capabilities.
The complexity of human odour is one of the major challenges to the development of such a technique, with comprehensive reviews of human-originating volatiles finding a wide variety of chemical compounds, including: acids, alcohols, aldehydes, esters, hydrocarbons, ketones, heterocyclic compounds, and sulphur-containing compounds (2,3).
Researchers reasoned that GC–MS would be the most appropriate method because of the nature of the molecules involved, but based upon the sample complexity and the peak capacity limitations of classic one-dimensional GC–MS it was determined that GC×GC–MS would be better suited. In order to optimize the method, 27 different analytical setups were evaluated based upon the criteria of column set, gradient, and a modulation time.
Results indicated that based upon the analytical criteria, including six complementary orthogonality criteria, the developed method was appropriate for the analysis of human hand odour.
References
New Method Explored for the Detection of CECs in Crops Irrigated with Contaminated Water
April 30th 2025This new study presents a validated QuEChERS–LC-MS/MS method for detecting eight persistent, mobile, and toxic substances in escarole, tomatoes, and tomato leaves irrigated with contaminated water.
Accelerating Monoclonal Antibody Quality Control: The Role of LC–MS in Upstream Bioprocessing
This study highlights the promising potential of LC–MS as a powerful tool for mAb quality control within the context of upstream processing.
University of Tasmania Researchers Explore Haloacetic Acid Determiniation in Water with capLC–MS
April 29th 2025Haloacetic acid detection has become important when analyzing drinking and swimming pool water. University of Tasmania researchers have begun applying capillary liquid chromatography as a means of detecting these substances.