Researchers from the College of the Holy Cross have developed an ultrafast gas chromatography (UFGC) and chemometric method for the analysis of biodiesel blends.
Researchers from the College of the Holy Cross (Worcester, Massachusetts, USA) have developed an ultrafast gas chromatography (UFGC) and chemometric method for the analysis of biodiesel blends (1).
The reduction of greenhouse gas emissions is an internationally important topic with countries looking for methods to reduce emissions without significantly affecting the daily life of millions. One method to emerge has been the addition of biodiesel to petroleum diesel fuel. Added to diesel fuel to intentionally decrease greenhouse gas emissions, studies have indicated that the use of 100% biodiesel (B100) results in 74% fewer emissions when compared to petroleum diesel (2). Similar reductions are also seen in blended diesels where even a small addition of 20% biodiesel (B20) can decrease hydrocarbon emissions by around 20% and carbon monoxide emissions by around 13% (2). With countries looking to incentivize biodiesel addition, the accurate blending of diesel and biodiesel becomes vital as regulatory requirements must be met. Furthermore, retail outlets may want to change the blending percentage during different periods to maximize profits or reductions. Thus, the analysis of these fuels has become and will continue to become increasingly important.
Fuel adulteration is another major concern surrounding biodiesel-diesel blends because the addition of motor oil or vegetable oil to diesel can allow unscrupulous sellers to increase profit margins while impacting on consumers, with potential negative impacts on engine performance (3).
Currently, diesel fuel is analyzed using the UFGC method D7798, while biodiesel analysis is conventionally performed using spectroscopy or GC (4,5). Containing both the saturated hydrocarbons, aromatic hydrocarbons, and unsaturated hydrocarbons of diesel and the variety of fatty acid methyl esters (FAMEs) of biodiesel, biodiesel-diesel blends present a unique analysis challenge. This is amplified by the variety of biodiesel composition, which can vary based upon the feedstock used in production.
In this study researchers used the D7798 UFGC method, traditionally used for diesel, along with chemometric methods for the analysis of biodiesel-diesel blends.
Researchers reported that the method was successful for the analysis of biodiesel-diesel blends. If the focus was on common plant and tallow sources of biodiesel, the UFGC method required only a run time of 2.5–3 min with a cycle time of under 5 min. The study showed that a method currently used by many sectors for the analysis of diesel can be utilized for the analysis of biodiesel-diesel blends. With concerns about adulteration, the method also provides authorities with a quick and trusted technique to apply to get accurate results quickly.
References
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.