LCGC Asia Pacific
Waters Application Note
Erin E. Chambers,1 Mary E. Lame2 and Diane M. Diehl,11 Waters Corporation, Milford, Massachusetts, USA, 2 Pfizer, Neuroscience Research Unit, Groton, Connecticut, USA.
Fast, flexible platforms for peptide quantification are needed, particularly for a discovery setting. This type of methodology would be especially advantageous in the case of amyloid beta (aβ ) peptides. The deposition/formation of insoluble aggregates, or plaques, of aβ peptides in the brain is considered to be a critical event in the progression of Alzheimer's Disease (AD) and thus has the attention of many researchers. Historically, quantification of aβ peptides in biological fluids has relied mainly on the use of immunoassays, such as ELISA. These assays are time consuming, expensive to develop and labour intensive. They are subject to cross reactivity and an individual assay is required for each peptide. To meet the throughput requirements and constant flow of demands for new peptide methods in a discovery setting, there is a need for a highly specific yet flexible methodology based on an LC–MS–MS platform. In this work, this platform is coupled with selective sample preparation for the simultaneous quantification of multiple a peptides. This work focuses on methods for the 1-38, 1-40 and 1-42 aβ peptides, in support of preclinical studies.
Figure 1: Sequence, MW and pI information for amyloid β peptides.
LC system: Waters ACQUITY UPLC system
Column: ACQUITY UPLC BEH C18, 300 Å, 2.1 × 150 mm, 1.7 µm, Peptide Separation Technology
SPE device: Oasis MCX µElution 96-well plate
MS system: Waters Xevo TQ MS, ESI+
MS was performed in positive ion mode because CID of the 4+ precursor ion yielded several distinct product ions corresponding to inherently specific b sequence ions (representative spectrum shown in Figure 2).
Figure 2: Representative ESI+ MSâMS spectrum for amyloid β 1-42 with fragment sequence ions labelled.
Separation of the three amyloid β peptides is shown in Figure 3.
Figure 3: UPLCâMSâMS analysis of amyloid β 1-38, 1-40 and 1-42 peptides extracted from artificial CSF + 5% rat plasma.
SPE was performed using Oasis MCX, a mixed-mode sorbent, to enhance selectivity of the extraction. The sorbent relies on both reversed-phase and ion exchange retention mechanisms to selectively separate the aβ fraction from other high abundance polypeptides in complex CSF samples. The Oasis µElution plate (96-well format) provided significant concentration while eliminating evaporation and reconstitution, minimizing peptide losses.
Figure 4: Representative chromatogram showing basal levels of amyloid β 1-42 extracted from 3 sources of human and 1 source of monkey CSF.
N15-labelled internal standards were used for each peptide. Standard curves for all 3 aβ peptides were linear (1/x weighting) from 0.1 to 10 ng/mL in artificial CSF + 5% rat plasma. Basal levels of amyloid β 1-42 extracted from 3 sources of human and 1 source of monkey CSF are shown in Figure 4. Overspike QC samples were prepared in 3 sources of pooled human CSF and 1 source of pooled monkey CSF at 0.2, 0.8, 2 and 6 ng/mL. Accuracy and precision values for all 3 peptides met the regulatory criteria for LC–MS–MS assays. Representative results from QC sample analysis are shown in Table 1.
Table 1: Representative results from analysis of QC samples prepared in pooled human CSF, source 3.
• An SPE-UPLC–MS–MS bioanalytical method was developed and validated for the simultaneous quantification of multiple amyloid β peptides in human and monkey CSF.
• 96 samples can be extracted and ready for injection in < 30 minutes, providing the sample prep throughput required for pre-clinical and clinical studies.
• The method described herein eliminates time-consuming immunoassays or immunoprecipitation steps for pre-clinical work.
• This approach also allows one assay for the simultaneous measurement of several different amyloid β peptides from a single sample. This single assay provides a high degree of selectivity and specificity in a high-thoughput format while still achieving the high sensitivity required for low level endogeneous amyloid β peptides.
• The use of a single UPLC–MS–MS assay represents a significant advantage over an ELISA assay, which would require multiple assays with multiple antibodies to quantify each of the relevant peptides.
©2010 Waters Corporation. Waters, The Science of What's Possible, ACQUITY UPLC, Oasis, Xevo are trademarks of Waters Corporation.
Waters Corporation
34 Maple Street, Milford, Massachusetts 01757
tel. +1 508 478 2000 fax +1 508 478 1990
Website: www.waters.com
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.