LCGC Asia Pacific
Bruker Daltonics Application Note
Modern analytical applications often demand definitive tandem MS results on ever more complex samples using fast separation techniques. maXis is the only mass spectrometer able to deliver the maximum MS performance specification at the very highest speeds delivered by modern ultra performance liquid chromatography (UPLC) and capillary electrophoresis (CE). The maXis is specially designed to deliver excellent results in many applications including:
• Small molecule identification.
• Impurity and degradent identification.
• In vitro and in vivo drug metabolite identification.
• Intact protein analysis.
• Quantitative proteomics and protein identification.
Figure 1: Dilution series of okadaic acid from 0.1 to 100 ppb.
With resolution in excess of 40,000 and MS and MS–MS mass accuracy typically between 600–800 ppb at speeds of up to 20 full spectra per second simultaneously, no other mass spectrometer is better equipped to deliver definitive data on complex samples in proteomics, metabolomics and small molecule identification challenges.
Figure 2: Mass Accuracy determination for a variety of steroid molecules at 100 ppb.
• 20 Hz speed of acquisition at high resolution for high-speed chromatography.
• 40 k+ resolution in both MS and MS–MS mode.
• Wide dynamic range of 5 orders of magnitude for trace detection in complex mixtures.
• Sub-ppm mass accuracy in both MS and MS–MS mode for high confidence i.d.s.
Figure 3: Extracted Ion Chromatograms of 0.1 ppb of various steroids.
In this study, the maXis was challenged to measure low level impurities. The maXis was easily able to detect compounds at 0.1 ppb and exhibited at least a four order of magnitude dynamic range for quantification. In addition, when challenged with even co-eluting compounds of several orders of magnitude difference in concentration, the maXis was readily able to identify and measure both compounds despite the difference in concentration. The maXis would seem to meet many criteria for use as an instrument to measure and detect low level impurities in terms of sensitivity, dynamic range and mass accuracy.
Figure 4: Analysis of a co-eluting impurity. In this example Dinorvenlafaxine and Norvenlafaxine co-elute with a difference of 250 Ã in concentration, but the maXis detects and identifies both despite the difference in concentration.
Bruker Daltonics Inc.
Billerica, Massachusetts 01824, USA
tel. +1 978 663 3660 fax +1 978 667 5993
E-mail: ms-sales@bdal.com
Website: www.bdal.com
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.