A team of researchers led by Nawed Deshmukh of the School of Pharmacy and Chemistry at Kingston University (London, UK) has published new research using liquid chromatography?tandem mass spectrometry (LC?MS?MS) to identify steroid contamination in environmental water samples in Budapest, Hungary.
A team of researchers led by Nawed Deshmukh of the School of Pharmacy and Chemistry at Kingston University (London, UK) has published new research using liquid chromatography–tandem mass spectrometry (LC–MS–MS) to identify steroid contamination in environmental water samples in Budapest, Hungary.
The synthetic anabolic steroid stanozolol is often misused as a performance-enhancing drug and as an illegal growth aid in veterinary practice. These researchers previously reported stanozolol in hair samples collected from subjects living in Budapest. That finding prompted the current study of environmental contamination with the steroid.
In the study, the team used liquid–liquid extraction using pentane, which they found to be an efficient method for the extraction of stanozolol from water samples. This step was followed by direct detection using LC–MS–MS. The method was capable of detecting a 0.25 pg/mL concentration of stanozolol when only 5 mL of water was processed in the presence of stanozolol-d3 as internal standard. The method developed was found to be efficient, rapid, reproducible, sensitive and robust for the detection of stanozolol in aqueous matrices.
Three out of six samples from the Danube river, collected from December 2009 to November 2010, were found to contain stanozolol at concentrations up to 1.82 pg/mL. In contrast, only one sample (out of six) of urban tap water from the city of Budapest was found to contain stanozolol, at a concentration of 1.19 pg/mL. A total of 15 bottled waters analysed were found to be negative for the steroid.
The study was published in Chemistry Central Journal on 14 October 2011.
This story originally appeared in The Column. Click here to view that issue.
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.