The separation of intact glycoproteins presents a great challenge because one glycoprotein can exhibit many isoforms with close physiochemical properties. As a result, it is difficult to study them in isolation. A team of chemists from Nanjing University, China, have tested a polymeric weak anion exchange (WAX) monolithic capillary to assess the high resolution separation of glycoprotein isoforms, to see whether this provides the desired results.
The separation of intact glycoproteins presents a great challenge because one glycoprotein can exhibit many isoforms with close physiochemical properties. As a result, it is difficult to study them in isolation. A team of chemists from Nanjing University, China, have tested a polymeric weak anion exchange (WAX) monolithic capillary to assess the high resolution separation of glycoprotein isoforms, to see whether this provides the desired results.1
First they prepared a base monolith through ring-opening polymerization between tris(2,3-epoxypropyl)isocyanurate and tri(2-aminoethyl). This was then modified through a reaction with an aqueous ammonia solution to convert the unreacted epoxide moieties into primary amino groups. The prepared monolithic capillary was characterised by morphology, pore size, hydrophilicity and reproducibility.
Various versions of the monolith were produced by changing the ratio of the two molecules, the temperature of the reaction and the concentration of the pore-generating molecule. The performance of the monolith capillary was then evaluated using several typical glycoproteins as mode analytes. Under the optimized separation conditions, the tested glycoproteins were all resolved into distinct glycoforms. The monolith’s separation ability was compared with capillary zone electrophoresis (CZE) and revealed that the WAX column separated more glycoforms, both consistently and at a faster speed, although the resolution of some glycoprotein isoforms decreased.
Reference
1 Zhen Liu et al., J. Chromatogr. A, September 2011, doi: 10.1016/j. chroma 2011.08.079
This story originally appeared in The Column. Click here to view that issue.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.