The separation of intact glycoproteins presents a great challenge because one glycoprotein can exhibit many isoforms with close physiochemical properties. As a result, it is difficult to study them in isolation. A team of chemists from Nanjing University, China, have tested a polymeric weak anion exchange (WAX) monolithic capillary to assess the high resolution separation of glycoprotein isoforms, to see whether this provides the desired results.
The separation of intact glycoproteins presents a great challenge because one glycoprotein can exhibit many isoforms with close physiochemical properties. As a result, it is difficult to study them in isolation. A team of chemists from Nanjing University, China, have tested a polymeric weak anion exchange (WAX) monolithic capillary to assess the high resolution separation of glycoprotein isoforms, to see whether this provides the desired results.1
First they prepared a base monolith through ring-opening polymerization between tris(2,3-epoxypropyl)isocyanurate and tri(2-aminoethyl). This was then modified through a reaction with an aqueous ammonia solution to convert the unreacted epoxide moieties into primary amino groups. The prepared monolithic capillary was characterised by morphology, pore size, hydrophilicity and reproducibility.
Various versions of the monolith were produced by changing the ratio of the two molecules, the temperature of the reaction and the concentration of the pore-generating molecule. The performance of the monolith capillary was then evaluated using several typical glycoproteins as mode analytes. Under the optimized separation conditions, the tested glycoproteins were all resolved into distinct glycoforms. The monolith’s separation ability was compared with capillary zone electrophoresis (CZE) and revealed that the WAX column separated more glycoforms, both consistently and at a faster speed, although the resolution of some glycoprotein isoforms decreased.
Reference
1 Zhen Liu et al., J. Chromatogr. A, September 2011, doi: 10.1016/j. chroma 2011.08.079
This story originally appeared in The Column. Click here to view that issue.
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.