The Application Notebook
When working with complex matrices such as personal care products, sample preparation is perhaps the most difficult step of the analysis process. By utilizing a targeted sample preparation technique, such as ion-exchange SPE, analysis can be significantly improved as compared to less targeted techniques such as liquid-liquid extraction.
When working with complex matrices such as personal care products, sample preparation is perhaps the most difficult step of the analysis process. By utilizing a targeted sample preparation technique, such as ion-exchange SPE, analysis can be significantly improved as compared to less targeted techniques such as liquid-liquid extraction. Our work successfully extracted metronidazole from foaming facial cleanser using a polymeric cation-exchange SPE sorbent, Strata™ -X-C, followed by a rapid LC–MS-MS analysis on a Kinetex® 2.6 µm XB-C18 HPLC/UHPLC core-shell column.
Sample Pretreatment:
1. Dissolve 0.250 g of Foaming Facial Cleanser in 10 mL of 0.1 N HCl
2. Vortex until homogeneous
3. Centrifuge sample at 5000g for 5 min
The pretreated sample is further cleaned up and concentrated using SPE.
Cartridge: Strata-X-C, 30 mg/3 mL
Condition: 1 mL methanol
Equilibrate: 1 mL 0.1 N HCl
Load: 3 mL of pretreated sample
Wash 1: 3 mL 0.1 N HCl
Wash 2: 3 mL methanol
Wash 3: 6 mL ethyl acetate
Dry: 5 min under full vacuum
Elute: 1 mL 5% NH4OH in methanol (v/v)
Dry down: Evaporate under a stream of nitrogen gas at 50 °C until dry
Reconstitute: Reconstitute samples with 200 µL of methanol/0.1% formic acid (10:90)
We were able to effectively extract metronidazole from foaming facial cleanser using a targeted SPE procedure on Strata-X-C polymeric SPE sorbent. The cation-exchange properties of the Strata-X-C SPE sorbent targeted the sp2 hybridized nitrogen at the 3 position of the imidazole ring in the metronidazole structure, forming a tight bond between the sorbent and the metronidazole compound. The strong interaction allowed a strong solvent wash of ethyl acetate to be performed which removed a significant amount of matrix interferences (Figure 1).
Figure 1: The vial on the left was not subjected to a strong organic wash and therefore contains matrix interferences such as foaming agents. After a strong ethyl acetate wash, matrix interferences are no longer present in the vial on the right.
By implementing a targeted SPE method, matrix interferences were significantly removed from a foaming facial cleanser matrix. This cleanup process allowed for a sensitive LC–MS-MS method that could detect metronidazole at low levels, down to 100 pg/mL. (Visit www.phenomenex.com/Application and search for Application No. 20631 for LC–MS-MS conditions).
Phenomenex Inc.
411 Madrid Avenue, Torrance, CA 90501
Tel. (310) 212-0555, (310) 328-7768
Website: www.phenomenex.com
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.
Axcend Focus LC® Cartridge Options
December 19th 2024Welcome to our comprehensive selection of High-Performance Liquid Chromatography (HPLC) cartridges. Designed for precision and reliability, our cartridges cater to diverse analytical needs, ensuring optimal performance in your laboratory processes.