Scientists at the Norwegian Defence Research Establishment (Kjeller, Norway) are working in collaboration with the University of Oslo (Oslo, Norway) to develop new methods to detect the illicit use of nerve agents. In a recent study published in the journal Analytical Chemistry, the team presented a novel method for the quantification of nerve agent metabolites in human serum and urine by combining salting-out assisted liquid–liquid extraction (SALLE) and on-line solid-phase extraction–liquid chromatography–tandem mass spectrometry (SPE–LC–MS–MS).
Photo Credit: Laguna Design/Getty Images
Scientists at the Norwegian Defence Research Establishment (Kjeller, Norway) are working in collaboration with the University of Oslo (Oslo, Norway) to develop new methods to detect the illicit use of nerve agents. In a recent study published in the journal Analytical Chemistry, the team presented a novel method for the quantification of nerve agent metabolites in human serum and urine by combining salting-out assisted liquid–liquid extraction (SALLE) and on-line solid-phase extraction–liquid chromatography–tandem mass spectrometry (SPE–LC–MS–MS).1
Nerve agents are one of the most lethal chemical warfare agents; the most commonly known are sarin, soman, tabun, GF, and VX. Belonging to the family of organophosphates, they exert their toxicity by disrupting the mechanism of nerve message transfer to organs.1 They are fairly simple to manufacture and can either be ingested, inhaled, or absorbed through the skin with lethal effect. The stockpiling and use of nerve agents is banned by the Chemical Weapons Convention, which was established by the Organization for the Prohibition of Chemical Weapons, but there are still reports of their use as a weapon. Lead author Bent Tore Røer told The Column: “The motivation for the present study was the need for a more rapid, but still sensitive method for determination of nerve agent biomarkers in serum and urine (most present developed methods require several hours of sample preparation). Rapid determination of the biomarkers is of prime importance to guide medical countermeasures in emergency cases where military personnel or civilians (for example, in terrorist actions) are exposed to nerve agents.”
On entering the body, nerve agents are broken down into different alkyl methylphosphonic acids (AMPAs) that then slowly breaks down to methylphosphonic acid (MPA). The primary metabolites can be specific to certain nerve agents, but biomarkers are rapidly excreted from the body within 1–2 weeks. Røer told The Column: “In conflicts with suspected use of chemical weapons, biological samples from survivors may not be available until several days to weeks after the incident, as was the case in the UN inspection to investigate allegations of the use of chemical weapons in Syria, 2013.”
Samples of urine and serum spiked with ethyl, isopropyl, isobutyl, cyclohexyl, and pinacolyl methylphosphinc acid were prepared using SALLE, requiring no more than 10 min sample pretreatment time. The samples were then analyzed by performing on-line hydrophilic interaction liquid chromatography (HILIC) SPE–LC–MS–MS. According to the paper, the time from receiving a sample to determining nerve agent exposure was under 30 min and the LOD was 0.04–0.12 ng/mL. Røer told The Column: “Further, the selective pre-concentration of the biomarkers on zirconium dioxide coupled on-line to LC–MS–MS gives method sensitivity comparable to the most sensitive existing method (if using a triple quadrupole MS like the others, our method would probably be the most sensitive). We believe that the combination of SALLE and on-line SPE–LC–MS–MS could be employed for many types of biomarkers, and thus has a wide application.”
Røer is now working on the write-up of his PhD thesis, but says that in the future, research will focus on using the novel combination of SALLE and on-line SPE–LC–MS–MS to determine other types of chemical warfare agents. - B.D.
Reference
1. B.T. Røen, S.R. Sellevåg, and E. Lundanes, Analytical Chemistry DOI: 10.1021/ac503408x (2014).
This story originally appeared in The Column. Click here to view that issue.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.