Researchers have carried out a critical analysis of high-throughput proteomic and metabolomic studies on the pathobiology of SARS-CoV-2.
Researchers have carried out a critical analysis of high-throughput proteomic and metabolomic studies on the pathobiology of SARS-CoV-2 in humans and performed a meta-analysis of significantly altered biomolecular profiles in COVID-19 patients (1).
In any human infection the efficiency of the host’s immune system and the pathogen’s infectivity contribute equally to the effectiveness of the infection. Understanding the host immune response, viral mode of transmission, and the alterations that occur to specific biological pathways can provide valuable insights into the pathobiology of the virus and, ultimately, lead to improved survival outcomes for those affected.
The COVID-19 pandemic has led to urgent and intensive investigations into the responsible SARS-CoV-2 virus; however, the diversity of alterations to pathophysiological pathways, the diverse conditions, and the degrees of severity seen between patients as well as the diverse outcomes have contributed to uncertainty, with numerous multiomic investigations completed and ongoing attempts to unravel the intricacies of the virus. Researchers collated the results of these studies so far and analyzed them critically to bring about a greater understanding of the disease.
One of the key findings when interactomic results were analyzed was the range of cellular housekeeping functions, such as nucleic acid metabolism or protein trafficking, affected by COVID-19. The array of changes the virus was capable of inflicting in the most severe infections goes some way to explaining its possible fatal outcome.
Several studies on the varying grades of severity of COVID-19 found that the disease’s progression was mediated by commonly dysregulated pathways of the innate immune response. Furthermore, most COVID-19 patients exhibit up-regulation of the inflammation axis, with a strong antiviral interferon response causing the fever found in COVID-19 patients. The chain reaction caused by this ultimately leads to the well‑documented lung damage found in cases of severe COVID-19 infection, which ultimately exacerbates the symptoms of COVID-19.
Similarly, as a result of the excessive inflammation in the lungs, the blood coagulation pathway is disturbed. The consequences of which may be the exposure of the liver to pro-inflammatory molecules. Researchers noted that the Shu et al. recommendation of targeting these molecules could be a therapeutic option to manage COVID-19-related complications.
Proteomic analyses concluded that the most damage during severe COVID-19 infections was brought about through hyperinflammatory milieu coupled with tissue hypoxia that develops into acute respiratory distress syndrome (ARDS).
Results from the meta-analysis of significantly altered biomolecule profiles in COVID-19 patients revealed alterations in the immune response, fatty acid, and amino acid metabolism, as well as other pathways. These in turn manifest in symptoms such as hyperglycaemia and hypoxic sequelae.
Reference
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.