Researchers have carried out a critical analysis of high-throughput proteomic and metabolomic studies on the pathobiology of SARS-CoV-2.
Researchers have carried out a critical analysis of high-throughput proteomic and metabolomic studies on the pathobiology of SARS-CoV-2 in humans and performed a meta-analysis of significantly altered biomolecular profiles in COVID-19 patients (1).
In any human infection the efficiency of the host’s immune system and the pathogen’s infectivity contribute equally to the effectiveness of the infection. Understanding the host immune response, viral mode of transmission, and the alterations that occur to specific biological pathways can provide valuable insights into the pathobiology of the virus and, ultimately, lead to improved survival outcomes for those affected.
The COVID-19 pandemic has led to urgent and intensive investigations into the responsible SARS-CoV-2 virus; however, the diversity of alterations to pathophysiological pathways, the diverse conditions, and the degrees of severity seen between patients as well as the diverse outcomes have contributed to uncertainty, with numerous multiomic investigations completed and ongoing attempts to unravel the intricacies of the virus. Researchers collated the results of these studies so far and analyzed them critically to bring about a greater understanding of the disease.
One of the key findings when interactomic results were analyzed was the range of cellular housekeeping functions, such as nucleic acid metabolism or protein trafficking, affected by COVID-19. The array of changes the virus was capable of inflicting in the most severe infections goes some way to explaining its possible fatal outcome.
Several studies on the varying grades of severity of COVID-19 found that the disease’s progression was mediated by commonly dysregulated pathways of the innate immune response. Furthermore, most COVID-19 patients exhibit up-regulation of the inflammation axis, with a strong antiviral interferon response causing the fever found in COVID-19 patients. The chain reaction caused by this ultimately leads to the well‑documented lung damage found in cases of severe COVID-19 infection, which ultimately exacerbates the symptoms of COVID-19.
Similarly, as a result of the excessive inflammation in the lungs, the blood coagulation pathway is disturbed. The consequences of which may be the exposure of the liver to pro-inflammatory molecules. Researchers noted that the Shu et al. recommendation of targeting these molecules could be a therapeutic option to manage COVID-19-related complications.
Proteomic analyses concluded that the most damage during severe COVID-19 infections was brought about through hyperinflammatory milieu coupled with tissue hypoxia that develops into acute respiratory distress syndrome (ARDS).
Results from the meta-analysis of significantly altered biomolecule profiles in COVID-19 patients revealed alterations in the immune response, fatty acid, and amino acid metabolism, as well as other pathways. These in turn manifest in symptoms such as hyperglycaemia and hypoxic sequelae.
Reference
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.